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Abstract.  We describe a novel conceptual and formal model of memory 
structure that combines key aspects of global and local knowledge 
representation.  Applications of this “glocal memory” model to artificial general 
intelligence are discussed, in the context of the “Novamente Cognition Engine” 
and OpenCog software systems, and simpler prototype systems constituting 
“glocal Hopfield nets.”  Building on recent results regarding visual memory 
derived from single-neuron recordings, an hypothesis is made regarding how 
some instances of glocal memory might be achieved in the human brain.  It is 
also argued that glocal memory models the concept of “distributed cognition” 
according to which an individual human mind is both localized in a brain and 
distributed through a network of interactions with tools and other embodied 
minds.   

1   Introduction 

“Memory,” considered in a general sense, is central to intelligence and to complex 
systems in general.  Without the ability to reflect its past experiences in its present 
structure, a system cannot adapt, and hence cannot manifest either intelligence or 
complexity.  

However, the conceptual tools currently available for modeling and analyzing 
memory structures and dynamics (on the conceptual or formal level) are 
disappointingly simplistic.  In particular, popular approaches to understanding 
memory tend to focus either on local memory (in which a memory is stored in one 
place within a system) or global memory (in which a memory is stored as some sort 
of pattern of activation distributed across a system).  My suggestion is that neither 
global nor local memory models are sufficiently subtle or flexible to capture the way 
memory works in complex intelligent systems like human brains, nor the way 
memory should work in AI systems if these systems are to demonstrate robust 
intelligence.  Here I introduce a new concept of glocal memory, intended specifically 
to describe certain sorts of memory structures that combine local and global aspects.  
The basic notion of glocal memory is not entirely new; for instance, the hypothesis of 
(what is here called) glocal memory in the human cortex was described in detail in 
my1997 book From Complexity to Creativity.   However, the glocal memory concept 



has not previously been named, explicitly formalized, nor discussed in such a general 
context as is done here. 

The central idea of glocal memory is that declarative, episodic or procedural items 
may be stored in memory in the form of paired structures that are called (key, map) 
pairs.  The key is a localized version of the item and records some significant aspects 
of the items in a simple and crisp way.  The map is a dispersed, distributed version of 
the item which, represents the item as a (to some extent, dynamically shifting) 
combination of fragments of other items.  The map includes the key as a subset; 
activation of the key generally (but not necessarily always) causes activation of the 
map; and changes in the memory item will generally involve complexly coordinated 
changes on the key and map level both. 

After presenting a simple formalization of the glocal memory concept, applications 
of the idea to various aspects of human and artificial intelligence are discussed.  The 
hypothesis of glocal memory in the human brain, from (Goertzel, 1997), is updated in 
the light of more recent neuroscience thinking, and some implications for the design 
of formal neural networks are considered.  Next, the manifestation of glocal memory 
in AI is reviewed in the context of the Novamente Cognition Engine (Goertzel, 2006) 
and OpenCog (Goertzel, 2008) software systems.  Finally, attention is then paid to the 
application of glocal memory to notions of “distributed cognition” (in which the mind 
of a human or other embodied organism is considered as extending beyond its body 
into those aspects of the world that regularly and intricately interact with its body).   

2   A Simple Formalization of Glocal Memory 

To explain the notion of glocal memory more precisely, we will introduce a simple 
formal model of a system S that uses a memory to record information relevant to the 
actions it carries out.  The overall concept of glocal memory should not be considered 
as restricted to this particular formal model.  The formal model is not intended for 
maximal generality, but is intended to encompass a variety of current AI system 
designs and formal neurological models. 

In this model, we will consider S’s memory subsystem as a set of objects we’ll call 
“tokens,” embedded in some metric space.  The metric in the space, which we will 
call the “basic distance” of the memory, generally will not be defined in terms of the 
semantics of the items stored in the memory; though it may come to shape these 
dynamics through the specific architecture and evolution of the memory. Note that 
these tokens are not intended as generally being mapped one-to-one onto meaningful 
items stored in the memory.  The “tokens” are the raw materials that the memory uses 
to store items. 

We assume that each token, at each point in time, may meaningfully be assigned a 
certain quantitative “activation level.”  Also, tokens may have other numerical or 
discrete quantities associated with them, depending on the particular memory 
architecture.  Finally, tokens may relate other tokens, so that optionally a token may 
come equipped with an (ordered or unordered) list of other tokens. 

To understand the meaning of the activation levels, one should think about S’s 
memory subsystem as being coupled with an action-selection subsystem, that 



dynamically chooses the actions to be taken by the overall system in which the two 
subsystems are embedded.  Each combination of actions, in each particular type of 
context, will generally be associated with the activation of certain tokens in memory. 

Then, as analysts of the system S, we may associate each token T with an 
“activation vector” v(T,t), whose value for time t consists of the activation of the 
token T at time t.    

“Items stored in memory” over a certain period of time, may then be defined as 
clusters in the set of activation vectors associated with memory during that period of 
time.  Note that the system S itself may explicitly recognize and remember patterns 
regarding what items are stored in its memory – but, from an external analyst’s 
perspective, the set of items in S’s memory is not restricted to the ones that S has 
explicitly recognized as memory items.  

The “localization” of a memory item may be defined as the degree to which the 
various tokens involved in the item are close to each other according to the metric in 
the memory metric-space.  This degree may be formalized in various ways, but 
choosing a particular quantitative measure is not important here.  A highly localized 
item may be called “local” and a not-very-localized item may be called “global.” 

We may define the “activation distance” of two tokens as the distance between 
their activation vectors.  We may then say that a memory is “well aligned” to the 
extent that there is a correlation between the activation distance of tokens, and the 
basic distance of the memory metric-space. 

Given the above set-up, the basic notion of glocal memory can be enounced fairly 
simply.  A glocal memory is one: 

 
• That is reasonably well-aligned (i.e. the correlation between activation 

and basic distance is significantly greater than random) 
• In which most memory items come in pairs, consisting of one local item 

and one global item, so that activation of the local item (the “key”) 
frequently leads in the near future to activation of the global item (the 
“map”) 

 
Obviously, in the scope of all possible memory structures constructible within the 

above formalism, glocal memories are going to be very rare and special.  But, I 
suggest that they are important, because they are generally going to be the most 
effective way for intelligent systems to structure their memories. 

An example of a predominantly local memory structure, in which nearly all 
significant memory items are local according to the above definition, is the Cyc 
logical reasoning engine (Lenat and Guha, 1990).   To cast the Cyc knowledge base in 
the present formal model, the tokens are logical predicates.  Cyc does not have an in-
built notion of activation, but one may conceive the activation of a logical formula in 
Cyc as the degree to which the formula is used in reasoning or query processing at a 
certain point in time.  And one may define a basic metric for Cyc by associating a 
predicate with its extension, and definiting the similarity of two predicates as the 
symmetric distance of their extensions.  Cyc is reasonably well-aligned, but according 
to the dynamics of its querying and reasoning engines, it is basically a local memory 
structure without significant global memory structure. 



On the other hand, an example of a predominantly global memory structure, in 
which nearly all significant memory items are global according to the above 
definition, is the Hopfield associative memory network (Amit, 1989).  Here memories 
are stored in the pattern of weights associated with synapses within a network of 
formal neurons, and each memory in general involves a large number of the neurons 
in the network.  To cast the Hopfield net in the present formal model, the tokens are 
neurons and synapses; the activations are neural net activations; the basic distance 
between two neurons A and B may be defined as the percentage of the time that 
stimulating one of the neurons leads to the other one firing; and to calculate a basic 
distance involving a synapse, one may associate the synapse with its source and target 
neurons.  With these definitions, a Hopfield network is a well-aligned memory, and 
(by intentional construction) a markedly global one.  Local memory items will be 
very rare in a Hopfield net. 

While predominantly local and predominantly global memories may have great 
value for particular applications, my suggestion is that they also have inherent 
limitations.  If so, it means that the most useful memories are going to be those that 
involve both local and global memory items in central roles.  However, this is a more 
general and less risky claim than the assertion that glocal memory structure as defined 
above is important.  Because, “glocal” as defined above doesn’t just mean “neither 
predominantly global nor predominantly local.”  Rather, it refers to a specific pattern 
of coordination between local and global memory items – what I have called the 
“keys and maps” pattern. 

3   Hints of Glocal Memory in the Human Brain 

Our understanding of human brain dynamics is still very primitive, one 
manifestation of which is the fact that we really don’t understand how the brain 
represents knowledge, except in some very simple respects.  So anything anyone says 
about knowledge representation in the brain, at this stage, has to be considered highly 
speculative.  Existing neuroscience knowledge does imply constraints on how 
knowledge representation in the brain may work, but these are relatively loose 
constraints.  These constraints do imply that, for instance, the brain is neither a 
relational database (in which information is stored in a wholly localized manner) nor a 
collection of “grandmother neurons” that respond individually to  high-level percepts 
or concepts; nor a simple Hopfield type neural net (in which all memories are 
attractors globally distributed across the whole network).  But they don’t tell us nearly 
enough to, for instance, create a formal neural net model that can confidently be said 
to represent knowledge in the manner of the human brain. 

As an initial example of the current state of knowledge, I’ll discuss here a series of 
papers regarding the neural representation of visual stimuli (Quinoga et al, 2005; 
2008), which deal with the fascinating discovery of a subset of neurons in the medial 
temporal lobe (MTL) that are selectively activated by strikingly different pictures of given 
individuals, landmarks or objects, and in some cases even by letter strings.   For instance, 
in the 2005 paper, it is noted that 

 
in one case, a unit responded only to three completely different images of the 



ex-president Bill Clinton. Another unit (from a different patient) responded 
only to images of The Beatles, another one to cartoons from The Simpson’s 
television series and another one to pictures of the basketball player Michael 
Jordan.  

 
These empirical results seem quite clear and exciting, yet the authors’ theoretical 

interpretation of the data has consistently been much less so.  In the 2005 abstract, 
they note that their results “suggest that neurons might encode an abstract 
representation of an individual.”  And indeed, the title of the 2005 paper is the rather 
gutsily worded “Invariant visual representation by single neurons in the human 
brain.”  Yet in the paper’s conclusion the authors tell a somewhat more conservative 
story: 

 
How neurons encode different percepts is one of the most intriguing 
questions in neuroscience. Two extreme hypotheses are 
schemes based on the explicit representations by highly selective 
(cardinal, gnostic or grandmother) neurons and schemes that rely on 
an implicit representation over a very broad and distributed population 
of neurons. In the latter case, recognition would require the 
simultaneous activation of a large number of cells and therefore we 
would expect each cell to respond to many pictures with similar basic 
features. This is in contrast to the sparse firing we observe, because 
most MTL cells do not respond to the great majority of images seen 
by the patient. Furthermore, cells signal a particular individual or 
object in an explicit manner27, in the sense that the presence of the 
individual can, in principle, be reliably decoded from a very small 
number of neurons.We do not mean to imply the existence of single 
neurons coding uniquely for discrete percepts for several reasons: 
first, some of these units responded to pictures of more than one 
individual or object; second, given the limited duration of our 
recording sessions, we can only explore a tiny portion of stimulus 
space; and third, the fact that we can discover in this short time some 
images—such as photographs of Jennifer Aniston—that drive the 
cells suggests that each cell might represent more than one class of 
images. Yet, this subset of MTL cells is selectively activated by 
different views of individuals, landmarks, animals or objects. This 
is quite distinct from a completely distributed population code and 
suggests a sparse, explicit and invariant encoding of visual percepts in MTL. 

 
 
It seems that the alternate title “Invariant visual representation by sparse neuronal 
subnetworks in the human brain,” might have better captured their actual conclusions 
– and yet, this weaker title would not have communicated the exciting nature of some 
of their individual findings, such as the subject who apparently had “Bill Clinton” 
neurons which did not fire in response to other test images (though obviously this 
doesn’t rule out that those neurons might have fired in a variety of other 
circumstances, which indeed I suspect would be the case). 

The 2008 paper backed away from the more extreme interpretation in the title as 
well as the conclusion, with the title “Sparse but not "Grandmother-cell" coding in the 
medial temporal lobe.”  As the authors emphasize there, 



 
Given the very sparse and abstract representation of visual information by 
these neurons, they could in principle be considered as ‘grandmother cells’. 
However, we give several arguments that make such an extreme interpretation 
unlikely. 
 
 
... 
 
MTL neurons are situated at the juncture of transformation of percepts into 
constructs that can be consciously recollected. These cells respond to 
percepts rather than to the detailed information falling on the retina. Thus, 
their activity reflects the full transformation that visual information 
undergoes through the ventral pathway. A crucial aspect of this 
transformation is the complementary development of both selectivity and 
invariance. The evidence presented here, obtained from recordings of single-
neuron activity in humans, suggests that a subset of MTL neurons possesses 
a striking invariant representation for consciously perceived objects, 
responding to abstract concepts rather than more basic metric details. This 
representation is sparse, in the sense that responsive neurons fire only to 
very few stimuli (and are mostly silent except for theirpreferred stimuli), but it 
is far from a Grandmother-cell representation. The fact that the MTL 
represents conscious abstract information in such a sparse and invariant way 
is consistent with its prominent role in the consolidation of long-term 
semantic memories. 

 
It’s interesting to note how inadequate the Quinoga et al data really is for 

exploring the notion of glocal memory in the brain.  Suppose it’s the case that 
individual visual memories correspond to keys consisting of small neuronal 
subnetworks, and maps consisting of larger neuronal subnetworks.  Then it would be 
not at all surprising if neurons in the “key” network corresponding to a visual concept 
like “Bill Clinton’s face” would be found to respond differentially to the presentation 
of appropriate images.  Yet, it would also be wrong to overinterpret such data as 
implying that the key network somehow comprises the “representation” of Bill 
Clinton’s face in the individual’s brain.  In fact this key network would comprise only 
one aspect of said representation.   

In the glocal memory hypothesis, a visual memory like “Bill Clinton’s face” 
would be hypothesized to correspond to an attractor spanning a significant 
subnetwork of the individual’s brain – but this subnetwork still might occupy only a 
small fraction of the neurons in the brain (say, 1/100 or less), since there are very 
many neurons available.   This attractor would constitute the map.  But then, there 
would be a much smaller number of neurons serving as key to unlock this  map: i.e. if 
a few of these key neurons were stimulated, then the overall attractor pattern in the 
map as a whole would unfold and come to play a significant role in the overall brain 
activity landscape.    In prior publications (e.g. Goertzel, 1997) I have explored this 
hypothesis in more detail in terms of the known architecture of the cortex and the 
mathematics of complex dynamical attractors. 

So, one possible interpretation of the Quinoga et al data is that the MTL neurons 
they’re measuring are part of key networks that correspond to broader map networks 



recording percepts.  The map networks might then extend more broadly throughout 
the brain, beyond the MTL and into other perceptual and cognitive areas of cortex.  
Furthermore, in this case, if some MTL key neurons were removed, the maps might 
well regenerate the missing keys (as would happen e.g. in the glocal Hopfield model 
to be discussed in the following section). 

Related, interesting evidence for glocal memory in the brain comes from a recent 
study of semantic memory (Patterson et al, 2007), which probed the architecture of 
semantic memory via comparing patients suffering from semantic dementia (SD) with 
patients suffering from three other neuropathologies, and found reasonably 
convincing evidence for what they call a “distributed-plus-hub” view of memory.   

The SD patients they studied displayed highly distinctive symptomology; for 
instance, their vocabularies and knowledge of the properties of everyday objects were 
strongly impaired, whereas their memories of recent events and other cognitive 
capacities remain perfectly intact. And these patients also showed highly distinctive 
patterns of brain damage: focal brain lesions in their anterior temporal lobes (ATL), 
unlike the other patients who had either less severe or more widely distributed 
damage in their ATLs. This led Patterson et al to conclude that the ATL (which is 
adjacent to the amygdala and limbic systems, which process reward and emotion; and 
the anterior parts of the medial temporal lobe memory system, which processes 
episodic memory) is a “hub” for amodal semantic memory, drawing general semantic 
information from episodic memories based on emotional salience.   

So, in this view, the memory of something like a “banana” would contain a 
distributed aspect, spanning multiple brain systems, and also a localized aspect, 
centralized in the ATL. The distributed aspect would likely contain information on 
various particular aspects of bananas, including their sights, smells, and touches, the 
emotions the evoke, and the goals and  motivations they related to.  The distributed 
and localized aspects would influence each other dynamically, but, the data Patterson 
et al gathered do not address dynamics and they don’t venture hypotheses in this 
direction. 

There is a relationship between the “distributed-plus-hub” view and Damasio's 
better-known notion of a “convergence zone” (Damasio, 2000), defined roughly as a 
location where the brain binds features together.  A convergence zone, in Damasio’s 
perspective, is not a "store" of information but an agent capable of decoding a signal 
(of reconstructing information).  He also uses the metaphor that convergence zones 
behave like indexes drawing information from other areas of the brain – but they are 
not static but rather dynamic indices, containing the instructions needed to recognize 
and combine the features constituting the memory of something.  The mechanism 
involved in the distributed-plus-hub model is similar to a convergence zone, but with 
the important difference that hubs are less local: Patterson et al’s semantic hub may 
be thought of a kind of “cluster of convergence zones” consisting of a network of 
convergence zones for various semantic memories. 

What is missing in Patterson’s and Damasio’s perspective is a vision of distributed 
memories as attractors.  The idea of localized memories serving as indices into 
distributed knowledge stores is important, but is only half the picture of glocal 
memory: the creative, constructive, dynamical-attractor aspect of the distributed 



representation is the other half.  The closest thing to a clear depiction of this aspect of 
glocal memory that seems to exist in the neuroscience literature is a portion of 
William Calvin’s theory of the “cerebral code” (Calvin, 1996).  Calvin proposes a set 
of quite specific mechanisms by which knowledge may be represented in the brain 
using complexly-structured strange attractors, and by which these strange attractors 
may be propagated throughout the brain.   Calvin explores in great detail how a 
distributed attractor may propagate from one part of the brain to another in pieces, 
with one portion of the attractor getting propagated first, and then seeding the 
formation in the destination brain region of a close approximation of the whole 
attractor.   

Calvin’s theory may be considered a genuinely glocal theory of memory.  
However, it also makes a large number of other specific commitments that are not 
part of the notion of glocality, such as his proposal of hexagonal meta-columns in the 
cortex, and his commitment to evolutionary learning as the primary driver of neural 
knowledge creation.  We find these other hypotheses interesting and highly 
promising, yet feel it is also important to separate out the notion of glocal memory for 
separate consideration. 

Regarding specifics, our suggestion is that Calvin’s approach may overemphasize 
the distributed aspect of memory, not giving sufficient due to the relatively localized 
aspect as accounted for in the Quinoga et al results discussed above.  In Calvin’s 
glocal approach, global memories are attractors and local memories are parts of 
attractors.  We suggest a possible alternative, in which global memories are attractors 
and local memories are particular neuronal subnetworks such as the specialized ones 
identified by Quinoga et al.  However, this alternative does not seem contradictory to 
Calvin’s overall conceptual approach, even though it is different from the particular 
proposals made in (Calvin, 1996). 

The above paragraphs are far from a complete survey of the relevant neuroscience 
literature; there are literally dozens of studies one could survey pointing toward the 
glocality of various sorts of human memory.  Yet experimental neuroscience tools are 
still relatively primitive, and every one of these studies could be interpreted in various 
other ways. In the next couple decades, as neuroscience tools improve in accuracy, 
our understanding of the role of glocality in human memory will doubtless improve 
tremendously.  

 



 

 

4   Glocal Hopfield Nets 

Following up on the ideas of the previous section, it is interesting to explore the 
notion of formal neural network models that embody the notion of glocal memory.   
My colleagues and I have recently run some interesting simulations with a variation 
on Hopfield netural nets that explicitly incorporates the notion of glocality.  Our 
technical results will be reported elsewhere, but, a brief discussion of the main ideas 
would seem appropriate here. 

Essentially, we augment the standard Hopfield net architecture by adding a set of 
“key neurons.”  These are a small percentage of the neurons in the network, and are 
intended to be roughly equinumerous to the number of memories the network is 
supposed to store.  When the Hopfield net converges to an attractor A, then new links 
are created between the neurons that are active in A, and one of the key neurons.  
Which key neuron is chosen?  The one that, when it is stimulated, gives rise to an 
attractor pattern maximally similar to A.   

The ultimate result of this is that, in addition to the distributed memory of 
attractors in the Hopfield net, one has a set of key neurons that in effect index the 
attractors.  Each attractor corresponds to a single key neuron.  In the glocal memory 
model, the key neurons are the keys and the Hopfield net attractors are the maps.  

This algorithm has been tested in sparse Hopfield nets, using both standard 
Hopfield net learning rules and Storkey’s modified palimpsest learning rule (Storkey 
and Valabregue, 1999), which provides greater memory capacity in a continuous 
learning context.   The use of key neurons turns out to slightly increase Hopfield net 
memory capacity, but this isn’t the main point.   The main point is that one now has a 
local representation of each global memory, so that if one wants to create a link 
between the memory and something else, it’s extremely easy to do so – one just needs 
to link to the corresponding key neuron.  Or, rather, one of the corresponding key 
neurons: depending on how many key neurons are allocated, one might end up with a 
number of key neurons corresponding to each memory, not just one. 

In spite of their considerable theoretical power, Hopfield nets are not particularly 
useful for practical applications on von Neumann computer hardware (appropriately 
inexpensive massively parallel computer hardware would be another story, but that’s 
not the direction the computer industry has taken), so the above-described 
experiments with glocal Hopfield nets were conducted with a view toward intellectual 
exploration – in order to understand the possible nature of glocal memory in the brain 
via  a concrete computational model; and in order to provide a simple prototype 
domain for experimenting with related ideas in the more complex context of 



integrative AGI systems such as those discussed in the following section. 

5   Glocal Memory in Integrative AGI Systems 

One of the main motivations for the development of the glocal memory concept 
has been the design of artificial memories, which is a task different in many ways 
from the analysis of modeling of naturally occurring memories.  In our work on the 
Novamente Cognition Engine (Goertzel, 1996) and OpenCog (Goertzel, 2008) AI 
systems, my colleagues and I have been motivated by the glocal memory concept to 
design memory approaches that are explicitly glocal in nature. 

The glocality concept hits straight at the center of one of the biggest debates of 
theoretical AI: symbolic versus subsymbolic knowledge representation.  This 
dichotomy is often discussed but rarely drawn in a formal and rigorous way, and I 
have argued elsewhere that it is actually a largely bogus dichotomy (Goertzel et al, 
2008).  Traditionally, logic-based AI systems are viewed as “symbolic”, and neural 
net systems are viewed as “subsymbolic.”  But this distinction has gotten fuzzier and 
fuzzier in recent years, with developments such as 

 
• logic-based systems being used to control embodied agents (hence using 

logical terms to deal with data that is apparently perception or actuation-
oriented in nature, rather than being symbolic in the semiotic sense), see 
(Santore and Shapiro, 2003; Goertzel et al, 2008) 

• hybrid systems combining neural net and logical parts, or using logical or 
neural net components interchangeably in the same role (Lebiere and 
Anderson, in preparation) 

• neural net systems being used for strongly symbolic tasks such as 
automated grammar learning (Elman, 1991 plus a great deal of more 
recent work) 

 
In my own AI systems referenced above, I have explicitly sought to span the 

symbolic/subsymbolic pseudo-dichotomy, via creating integrative systems that 
combine logic-based aspects with neural-net-like aspects, not in the manner of 
multimodular systems, but via attaching uncertain-logical truth values and neural-net-
like weight and activation values to the same nodes and links in a knowledge-
representation hypergraph.  Furthermore, both the logical and neural-net-like features 
are used to handle all sorts of knowledge, from the most concrete perception and 
actuation related knowledge to the most abstract relationships.  The concept of 
glocality lies at the heart of this combination, in a way that spans the pseudo-
dichotomy: 

 
• Local knowledge is represented in abstract logical relationships stored in 

explicit logical form, and also in Hebbian-type associations between 
nodes and links 

• Global knowledge is represented in large-scale patterns of node and link 
weights, which lead to large-scale patterns of network activity, which 



often take the form of attractors qualitatively similar to Hopfield net 
attractors 

 
The data-store of nodes and links is acted on by a variety of cognitive processes, 

encapsulated in software objects called MindAgents.  Some MindAgents work 
together to carry out probabilistic logical reasoning according to the mathematics 
given in (Goertzel et al, 2008); others spread neural-net-like weights and activation 
values (called importance values) according to equations based on artificial 
economics but somewhat similar in nature to neural net spreading activation 
equations.  The attractors of this nonlinear activation spreading process constitute 
global memories; and there are then explicit MapEncapsulation MindAgents that 
identify these attractors and build “key nodes” corresponding to them, similarly to in 
the glocal Hopfield net described above.  The logical inference and activation 
spreading processes feed off each other in particular ways, so that the formation and  
maintenance of the glocal memory is a result of the integrated behavior of the 
system’s multiple cognitive dynamics.  

The result of all this is that a concept like “cat” might be represented as a 
combination of 

 
• a small number of logical relationships and strong associations, that 

constitute the “key” subnetwork for the “cat” concept 
• a large network of weak associations, binding together various nodes and 

links of various types and various levels of abstraction, representing the 
“cat map” 

 
The activation of the key will generally cause the activation of the map ... and the 

activation of a significant percentage of the map will cause the activation of the rest of 
the map, including the key.   Furthermore, if the key were for some reason forgotten, 
then after a significant amount of effort, the system would likely to be able to 
reconstitute it (perhaps with various small changes) from the information in the map.   
I suspect that this particular kind of glocal memory will turn out to be very powerful 
for AI, due to its ability to combine the strengths of formal logical inference with 
those of self-organizing attractor neural networks. 

6  Socio-culturo-technological Glocality and Distributed Cognition 

So far I have talked about glocal memory within particular, physically localized 
brains, or within particular,  delimited AI systems with coherent self/identity 
structures.   Now I will extend the concept further, making use of the notion of 
“distributed cognition” in its broadest sense.  A number of theorists (e.g. Hutchins, 
1995; Perry, 2003) have argued that the human mind is not really contained in a 
single brain and body – but that, in fact, each individual person is best conceived as a 
pattern of activation across a sociocultural network, and across a subset of the 
physical world including e.g. the tools that the body associated with the mind 
habitually uses.    



A paradigm case for distributed cognition would be a large boat like an aircraft 
carrier and the crew on it.  It is not the isolated, encapsulated mind of any one single 
person or machine that is important for the successful operation of the boat  It is the 
cognition that is distributed over the personnel, sensors, and machinery both on the 
boat and, to a lesser extent, in the various other machines interacting with the boat, 
such as airplanes or port-based communication centers. 

As Mike Tintner pointed out to me in conversation, one interesting example of 
glocal memory in distributed cognition is military strategy, in which a single 
command by a single commander can trigger actions by a vast number of people with 
huge real-world consequences.  This leads to the possibility of powerful glocal 
memory processes.   

To consider the case of a war machine focused largely on global memory, consider 
the Russian army as depicted in War and Peace, where General Kutuzov proposes to 
essentially let the Russian army self-organize into its own context-appropriate battle 
patterns, rather than providing any kind of detailed top-down control.  Loosely 
speaking this is a sort of large-scale guerilla warfare.  The knowledge is in the whole 
– in the common sense of the common soldiers, not as individuals but as groups.   

On the other hand, the opposite would be something like Operation Desert Storm, 
which was carefully orchestrated and planned (in spite of some errors e.g. deaths by 
friendly fire), so that the individual actors were largely doing what the software told 
them to do, based on the programming created by its programmers under the strategic 
guidance of the military leaders.  Here the knowledge of strategy is localized, and 
from a strategic perspective, the individual humans carrying out the strategy are 
acting more like sensors and actuators rather than cognizers (though from their point 
of view as individual human actors, they are of course still carrying out cognition). 

In Kutuzov's battles, the knowledge of the military plan was contained in the army 
as a whole; in Desert Storm, the knowledge was contained in the central planning 
software and the minds of the relevant military leaders (hence localized from the view 
of the whole army).  In a glocal approach, on the other hand, both central planning 
and distributed, self-organized activity would be highly refined and productive; and 
they would be coordinated together dynamically and effectively.  And this is in fact 
the sort of thing one hears the US military talking about these days: it realizes it needs 
to achieve in future in order to combine rapid, flexible adaptivity with global 
coordination. 

A related example would be live performance of improvisatory music.  In this case, 
there is an interaction between the performers, the audience and the instrument. A 
“tight band” accustomed to improvising together is a great example of distributed 
cognition and its intersection with glocal memory: the knowledge of each song lives 
within the individual minds of the performers, and also within the collective mind of 
the group.  Replace one of the performers, and the global knowledge will pervade his 
mind somewhat, but his individuality will also have an effect, causing a shift in the 
nature of the music. 

Consider first the case of an individual performer, improvising on the piano.  The 
performer may have certain ideas, patterns and tastes in his mind – say, a habit of 
playing a melodic line that increasingly deviates from the scale implicit in the chords 
he’s playing, until it eventually gets so far away from the original scale that the 
connection is impossible to detect ... at which point he brings the melody back home 



to the original scale.  This habit may take a certain form in his mind, but it may take a 
quite different form when he sits down in front of the keyboard, because the feedback 
from actually hearing the music played makes him listen and play differently.  And 
then, when he plays for an audience, the habit may shape itself quite differently than 
when he’s playing for himself, because he gets feedback from the audience regarding 
when they think the melodic line has deviated too far from the original scale, based on 
the looks on their faces, their body language and so forth.    

But next, introduce another musician.  Suppose there is a saxophonist improvising 
along with the pianist. Then things get subtler, because the saxophonist may choose to 
intervene anywhere in the course of the pianist’s improvisation, nudging the pianist 
back toward the original scale or further away from it.  In this case, the knowledge of 
how to construct the melodic line is both local within the mind/body/tool combination 
of the pianist, and global within the system consisting of the pianist/piano and 
saxophonist/saxophone.   This kind of dynamic is easy to hear, for example, in the 
interplay between John Coltrane and McCoy Tyner, especially in live recordings.   
This kind of dynamic exists both generically within a band, and specifically within a 
band’s approach to an individual song, thus yielding a quite refined and detailed 
distributed multi-person glocal memory. 

This sort of qualitative analysis doesn’t prove anything scientifically, of course.  
And, rigorously demonstrating things about the relationship between locally 
embodied and environmentally distributed mind is going to be particularly difficult, 
since it requires accurately studying patterns both in the locally embodied mind, and 
in the body’s interaction with the external physical and social environment.  
Designing experiments to test the hypothesis of the “socio-culturo-technologically 
glocal mind” is an important challenge.   

7   Conclusion 

The concept of glocal memory is simple but as I have argued here has quite broad 
scope.  It may seem perplexing that such a simple and natural concept has not been 
extensively popularized and applied already, but I attribute this to the cognitive 
preference of human theorists for maximally simple models, rather than to any 
problem with the idea itself.  Purely local and purely global models have a 
philosophical and analytic simplicity to them that glocality lacks.  However, I have 
sought to show here that the glocal memory idea has the potential to cast clarity on a 
variety of issues on a variety of levels.   The correct formulation of Occam’s razor is 
Einstein’s aphorism “As simple as possible, but no simpler,” and I suggest that glocal 
memory fits this description.  In considering human and AGI memory, I suggest that 
purely local and purely global models are “simpler than possible” whereas the glocal 
model is not. 

Specifically, we can look at an individual embodied mind as consisting of two 
different glocal-memory feedback loops: one where the keys and maps both lie within 
the local knowledge base associated with the mind (the brain, in the case of human 
intelligence; or the RAM and disk of the host computers, in the case of software 
intelligence); and one where this whole local knowledge base is the key, and the map 



lies in the interactions of the individual’s body with tools, other individuals, and other 
aspects of the world around it.   

Each of the angles on glocal memory described in the preceding sections may be 
elaborated in its own, disciplinarily appropriate way.  In the AI case, the challenge is 
to use glocal memory as the basis for a pragmatically useful AGI system.  In the 
neuroscience case, the challenge is to create and then experimentally explore more 
fine-grained biological and biopsychological hypotheses along the lines roughly 
explored above.   This is challenging in the experimental sense, because the current 
tools of experimental neuroscience tend to be either too low-level (single-neuron 
recordings) or too high-level (coarse whole-brain scans), but this problem will 
decrease as technology improves.  In the socio-culturo-technological case, the 
challenge is to formulate the glocal memory hypothesis more crisply in some 
particular set of situations (e.g. a collaborative research team, a sports team, etc.) and 
turn it into a specific set of relatively easily testable hypotheses.   

In conclusion, my suggestion is that keys, maps and glocality should become 
central parts of our working vocabulary for discussing, analyzing and engineering 
complex intelligent systems.  In a scientific context: the feedback loop of 
interconstruction between semantically related keys and maps is a critical aspect of 
memory in complex systems such as human minds and social systems, and ignoring it 
will cause us ongoing confusion.  In an AI engineering context: continuing to ignore 
glocality of memory will result in continuing to construct systems incapable of 
precise reasoning (due to lack of appropriate local manipulations) or incapable of 
intelligent contextual guidance of reasoning (due to lack of appropriate global 
dynamics corresponding to local manipulations). 
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