
NL Comprehension via Integrative AI and Human-Computer Interaction

Topics: natural language processing, human-computer interaction, knowledge representation

Ben Goertzel, Michael Ross, Cassio Pennachin, Moshe Looks, Hugo Pinto

Contact: ben@goertzel.org

Abstract

INLINK is an innovative software system enabling an AI

program to correctly interpret complex English sentences

via interaction with a human user, who reviews and corrects

interpretations within a graphical user interface. While not

as convenient as unsupervised natural language

comprehension, this mode of transforming linguistic

knowledge into formal knowledge is drastically more

efficient than expert-system-style rule encoding.

Furthermore, the system becomes more intelligent with

time, via adaptively learning from the feedback humans give

it during the interactive interpretation process. The

computational language processing inside the system is

carried out via a combination of the Sleator and Temperley

link parser with a collection of semantic mapping rules and

special algorithms for semantic disambiguation, reference

resolution and entity extraction. Query processing is carried

out via dynamic programming. The system is built within

the Novamente integrative AI framework, and a more

sophisticated version involving probabilistic inference and

replacing the link parser with a more advanced parsing

framework is currently under construction.

1 Introduction

INLINK
1

is a software system designed to enable interactive

natural language understanding. This refers to a modality in

which users enter sentences into a graphical user interface

which is connected to an AI system, and then interact with

the user interface to ensure that it has come to a correct

understanding of their sentences.

The creation of the system has been motivated by the

practical need to transform complex knowledge from textual

form into abstract, logical, relational form. Currently the

standard way of doing this is using expert-system-style

knowledge encoding [Jackson, 1998], but the expert system

approach is extremely slow and requires highly trained

users, so an alternative is badly needed.

Interactive knowledge entry is of course not as good as

purely unsupervised AI-based natural language

1

Intelligent Natural Language INterface for Knowledge Entry

understanding would be – if the latter worked fully

effectively. But lacking human-level AI software,

interactive natural language entry is currently the best we

can do.

However, due to the adaptive learning intrinsic in the

Novamente integrative AI architecture [Looks et al, 2004]

on which the INLINK framework is based, the system

learns from experience. Over time, as enough knowledge is

entered interactively, the system’s capability for accurate

unsupervised language understanding will improve. We

have already seen this happen, qualitatively, particularly in

the area of sense disambiguation.

 Here we will discuss INLINK from a user perspective,

and report some experiences of actual users entering

knowledge into the system; we will then briefly review the

computational linguistics and AI underlying the system.

The treatment of the latter will naturally be brief, but we

will touch on the key ingredients, which include the

Novamente AI Engine with its special variety of semantic-

network knowledge representation, and the Sleator and

Temperley link parser [Sleator and Temperley, 1993].

2 The INLINK Interactive Experience

From a user perspective, the INLINK system consists of a

Java user interface that connects to a remote server. Some

of the system’s linguistic and AI functionalities are

explicitly exposed to the user whereas others remain

concealed in the “back end” of the software application.

 The INLINK interface presents the user with two main

functionalities: knowledge entry and querying. To enter

knowledge, the user creates a “context” or opens an existing

one, and then enters a series of sentences in that context.

The entry of each sentence is a multi-step, iterative process;

and the system explicitly interprets each sentence in relation

to the other ones in the context. Typically a context might

refer to a single news article, or a single message.

Querying is quite similar to knowledge entry, in that it

also involves interactively entering a sentence within a

certain query context -- the difference being that the

sentence is a question rather than a statement, and that in the

case of querying, the user gets an answer back. Queries

may be one-time or persistent; the latter meaning that the

user is periodically “pushed back” new answers as new

information comes into the system.

The sentence entry process consists of multiple steps.

The user types in a sentence and clicks the PROCESS

button and the system tries to parse the sentence.

Sometimes it fails and the user needs to reformulate. When

the parsing process succeeds – which is most of the time, for

experienced users – the user is then presented with a

selection of several parses to choose from. In the case of

complex sentences there could be dozens of parses, but for

simple senses there are often 1, 2 or 3 parses. The main

reason we chose the link parser for our first version of

INLINK is that quite often it finds the correct parse in the

first few sentences.

Parses are presented to the user in a simple graphical

format inspired by the linguistic notion of

“subcategorization frames.” For instance, a rough depiction

of the subcategorization frames view of the sentence “He

was responsible for the bombing” is as follows:

 subjAGENT for

responsible = [he responsible bombing]

 singular %past uncountable

The view in the actual product looks somewhat different due

to color coding and clickable hyperlinking. A typical parse

of a typical sentence will lead to 3-8 different frames of this

form, which the user must read and understand in order to

validate or reject the parse.

 Having selected a parse, the next step is for the user to

check that the system has chosen the right word meanings

for the words in the sentence, and the right subject-argument

relations for various argument-bearing words in the

sentence. WordNet [Fellbaum, 1998] is used as the basic

resource for word meanings, but since WordNet doesn’t

cover prepositions and other ambiguous function words, we

have augmented WordNet with our own WordNet-like

resource covering these additional words. The user sees the

definitions INLINK has selected and if one of these isn’t

right, the user can select the correct one from a menu, or

create a new word sense.

 Next comes reference resolution: the system guesses, for

each word in the sentence, whether it refers to some other

word in the current context or in its general knowledge base.

The user may correct its guesses and may also enter in new

referents. Here some fairly simple heuristics let the system

guess correctly most of the time. For instance, quite often

“he” refers to the last male mentioned in the context.

 Finally, entity categorization involves placing words in

some basic categories such as person, organization, time,

place and number. The system tries to identify all these but

occasionally it makes errors which the user can correct.

 Having gone through all these steps – which can take the

user anywhere between 30 seconds and 10 minutes
2

depending on the complexity and novelty of the sentence

and the savvy of the user – it’s finally time to click

SUBMIT and send the correctly interpreted sentence to the

server, where it will be entered into Novamente’s semantic

network in fully logical, relational form.

Practical Experience with INLINK

How well does this somewhat complex interactive

process work in practice? In late 2004 two individuals

untrained in computer science or linguistics began using the

INLINK system to input a body of knowledge regarding

real-world events. Feedback from these users led to a

number of refinements to the interface and the parser – but

2

The computational processing is quite rapid; the vast bulk of

the time is occupied with the user reviewing the computer’s output

and making decisions.

overall the reported user experience has been reasonably

positive so far.

The most difficult aspect of INLINK, from a user

perspective, has proved to be the disambiguation of

prepositions and subject-argument relationships. Also, the

error rate of users in parse selection has been found to be

fairly high for long and complex sentences, but fairly low

for short sentences. Thus users are now strongly

encouraged to break long sentences down into series of

short sentences – a practice that causes INLINK to parse a

higher percentage of sentences anyway. The system’s

reference resolution capability makes it easy to link a series

of short sentences together.

Users become competent fairly easily at rephrasing

sentences into series of short sentences that INLINK could

easily understand. The following example shows a sentence

from a test corpus in its original form, and then in the form

in which it was rephrased for INLINK comprehension:

Original sentence:

THE SOURCE LATER FOUND OUT THAT

ALTHOUGH NO SUCH MEETING HAD EVER

TAKEN PLACE, HASSAN AL HURDABI TOLD

HER HOW WELL HIS PRESENTATION HAD

BEEN RECEIVED BY THE INTERNATIONAL

AUDIENCE.

Rephrased sentence (perfectly comprehend-

ed):

The source later found out that the meeting

never occurred.

Hurdabi told her the presentation of Hurdabi

had been received well by the international

audience.

3 The Novamente AI Engine

INLINK has been constructed within the Novamente

integrative AI framework. While the current version of

INLINK makes only modest use of Novamente’s learning

and reasoning capabilities, it makes heavy use of

Novamente’s knowledge representation, which is a special

form of semantic network.

 The Novamente AI Engine is a unique, integrative AI

architecture with general intelligence ambitions, which

bridges the gap between symbolic and subsymbolic AI

using a complex systems approach. It is implemented in

C++ for Linux for efficiency and scalability, and architected

to support distributed computing. AI-wise, Novamente uses

two main cognitive tools – Probabilistic Term Logic (PTL)

and the Bayesian Optimization Algorithm (BOA) [Pelikan,

2002] -- to generate numerous cognitive processes operative

in its multiple functionally specialized lobes.

The real essence of the Novamente design lies in its

learning dynamics, but we will not broach that topic here,

though we will mention some relevant uses of Novamente-

based probabilistic inference a little later on. The aspect of

Novamente most relevant to the current version of INLINK

is its knowledge representation, which we will now briefly

discuss.

Novamente Knowledge Representation

Knowledge representation in Novamente involves two

levels, the explicit and the emergent: we will discuss only

the former here, for sake of compactness and simplicity.

Emergent knowledge in Novamente has to do with

activation patterns emerging from the action of Novamente

dynamics on explicitly represented Novamente knowledge.

 Explicit knowledge representation in Novamente involves

discrete units called Atoms, which are of several types:

nodes, links, and containers (the latter two are ordered or

unordered collections of atoms). The network of nodes,

links and containers can be thought of as a “knowledge

network,” similar but not identical to traditional semantic

networks.

Each Atom is associated with a truth value, indicating,

roughly, the degree to which it correctly describes the

world. Novamente has been designed with several different

types of truth values in mind; the simplest of these consists

of a pair of values denoting probability and weight of

evidence. All Atoms also have an associated attention

value, indicating how much computational effort should be

expended on them. These contain two values, specifying

short and long term importance levels.

 Novamente node types include

• ConceptNodes, which derive their meaning via

interrelationships with other nodes

• PerceptNodes: nodes representing perceptual

inputs into the system (e.g., pixels, words, points in

time, etc.)

• TimeNodes representing moments and intervals of

time

• PredicateNodes representing complex patterns

• SchemaNodes embodying procedures

 SchemaNodes and PredicateNodes are nodes

containing procedures that output Atoms and truth values,

respectively. Procedures in Novamente are objects that

produce an output, possibly based on a sequence of atoms as

input. These objects contain structures called generalized

combinator trees -- small computer programs written in a

special language utilizing ideas from combinatory logic as

originally introduced in [Curry and Feys, 1958].

There are also special-purpose predicates that, instead of

containing combinator trees, represent specific queries that

report to the Novamente system some fact about its own

state – these are called “feeling nodes”. And finally, some

predicates may also be designated as “goal nodes”, in which

case the system’s GoalSatisfaction MindAgent allocates

effort towards making them true.

Links are Atoms that represent relationships between

other Atoms, such as fuzzy set membership, probabilistic

logical relationships, implication, hypotheticality, and

context. The complete list of (a few dozen) types and

subtypes of links used, and the justifications for their

inclusion, are omitted here for brevity. However, the most

essential links are

• Inheritance links (representing probabilistic logical

implication)

• Similarity links (a symmetric version of

Inheritance)

• Evaluation links (representing the relation between

a predicate and its argument)

• ExecutionOutput links (representing the

application of a function to an argument).

INLINK also makes heavy use of some specialized links

such as WSLinks (WordSenseLinks), that links WordNodes

(a kind of PerceptNode) to ConceptNodes.

4 The INLINK Language Processing Pipeline

We now briefly describe what happens inside the INLINK

software system, utilizing the Novamente integrative AI

architecture and knowledge representation and enabling the

user experience described in Section 2 above.

The current version of the INLINK NL comprehension

pipeline consists of three stages. In the first stage, the

syntax-processing component uses a lightly customized

version of the Sleator and Temperley “link parser,” and a

collection of software objects called “Semantic

Algorithms,” to convert an English sentence into a list of

possible semantic representations (“synsem parses”). Also,

at this stage, a collection of commercial and open-source

entity extractors is used to mark up words and phrases in the

sentence that are likely to correspond to particular types of

entities like people, places and times.

In the second stage, the Novamente AI Engine chooses

the best representations from the list and disambiguates

them by finding specific nodes that represent the meanings

of words and argument relations. As noted above, users are

able to manually override Novamente’s choices regarding

parse selection and disambiguation by selecting alternate

choices within the INLINK user interface.

Finally, once this is done, the knowledge embodied in the

user’s sentence is relayed to Novamente, where it can be

queried and reasoned about.

Link Grammar

Link grammar is an unusual NL parsing framework in that it

does not involve an explicit notion of phrase structure. This

causes it to deal with some linguistic constructs awkwardly,

but it also allows the link parser to rapidly find correct

parses within its top 1-5 choices in very many cases.

 For instance, the link grammar parse structure for the

sentence

The cat chased a snake

looks like:

 +----------------Xp---------------------------+

 +-----Wd----+ +----Os---+ |

 | +-Ds-+---Ss--+ +-Ds-+ |

 | | | | | | |

LEFT-WALL the cat.n chased.v a snake.n .

Each of the links shown joins two words and has a particular

type which embodies a particular aspect of syntax. For

instance, the S link goes between a subject and a verb; the O

link goes between an object and a verb.

 The link grammar dictionary assigns a collection of link

types to each syntactic sense of each word. The parsing

process involves drawing links connecting words,

consistently with the link parser dictionary and with a set of

constraints including the rule that the links in a sentence

should form a connected graph, and should not cross.

Mapping Parse Trees into Semantic Structures

The output of the link parser is a collection of syntactic links

spanning WordNodes. These must then be turned into

Novamente-style semantic nodes and links (e.g. logical

Inheritance links, and Evaluation links joining semantically

meaningful predicates to their arguments), via the combined

action of a pool of Semantic Algorithm objects.

A very simple example of an INLINK Semantic

Algorithm is the rule stating that transitive verbs (a syntactic

category) map into transitive actions (a semantic concept).

Of course, in itself this is not a very useful semantic

algorithm, because it’s so overly simple. In fact different

transitive verbs have different semantics, which leads to a

collection of subcategories of TransitiveAction.

 Very roughly one might say that one Semantic Algorithm

exists corresponding to each link type in the link grammar.

But this rule of thumb is broken many times: for instance,

ditransitive verbs are not handled very naturally in the link

grammar, so the Semantic Algorithms that handle them have

to deal with multiple link grammar links. And conjunctions

are handled awkwardly by the link grammar, largely in its

“postprocessor” phase, so these must be handled somewhat

complexly at the Semantic Algorithm stage.

A simple system of semantic “case roles” is used by

Semantic Algorithms to mediate the transformation from

natural language parses into Novamente nodes and links.

For example, the object of a verb may be assigned roles

such as objTARGET or objDESCRIPTEE.

http://www.link.cs.cmu.edu/link/dict/section-X.html
http://www.link.cs.cmu.edu/link/dict/section-W.html
http://www.link.cs.cmu.edu/link/dict/section-O.html
http://www.link.cs.cmu.edu/link/dict/section-D.html
http://www.link.cs.cmu.edu/link/dict/section-S.html
http://www.link.cs.cmu.edu/link/dict/section-D.html

INLINK’s case roles are partially based on the scheme

defined in [Cannesson and Saint-Dizier, 2002] and are also

closely related to those used in other knowledge resources

such as the SUMO ontology [Niles and Pease, 2001], a fact

which facilitates the integration of SUMO knowledge into

Novamente to aid with reasoning on nodes and links derived

via INLINK.

Semantic Disambiguation and Reference

Resolution

Semantic disambiguation, in the current version of INLINK,

is carried out partly using WordNet based algorithms

loosely similar to those in [Patwardhan et al, 2003].

However, we have found that the subtlest aspects of

semantic disambiguation have to do with words and

linguistic constructs not covered by WordNet: prepositions

and subject-argument relationships, for example.

In practice, in an interactive context, it is not very hard to

guess the correct meaning of a noun, verb, adverb or

adjective. Such words tend to be used in the same sense

repeatedly by the same user, and very strongly tend to be

used in the same sense repeatedly within the same context.

On the other hand, a word like “by” will generally be used

in different senses from sentence to sentence.

 In order to handle this difficulty we have implemented an

adaptive algorithm, which assigns each preposition or

subject-argument relationship a sense based on the senses

more recently assigned to the entity when used in

combination with words similar or identical to the words it’s

currently used with. For instance, if user types in the phrase

”He walked by the store,” and tells INLINK the correct

meaning of “by” in this context, then INLINK will make the

correct guess for the sense of “by” next time it sees the

sentence “She drove by the restaurant.”

 Reference resolution is handled in a similar manner:

pronouns and other words that explicitly require referents

are assigned referents based on analogy to recent history, a

simple approach that works quite well. In this case some

very simple adaptive learning is able to effectively leverage

a modest amount of user feedback. Usually INLINK

guesses the referent of “he” correctly, but if it gets it wrong

the first time in a particular context and is corrected, it will

very rarely get it wrong the second time.

Semantic Normalization of Linguistically-

Structured Knowledge

One problem that arose immediately upon trying to apply

Novamente’s probabilistic inference algorithms to the

output of INLINK’s semantic algorithms was the wide

divergence of representations provided for highly

semantically similar sentences. To illustrate this issue, we

will show here three representations for the following three

almost-semantically-identical sentences, produced by

INLINK’s semantic analysis component.

For sake of compactness, in these examples we omit

WSLinks and the like, and show only semantically

meaningful links between ConceptNodes. ConceptNodes

and SpecificEntityNodes are denoted by the names of the

WordNodes most closely linked to them, and other nodes

such as those denoting tense (e.g. %pres_ongoing) are

denoted by intuitive shorthand names

Finally, in these examples, links are shown in a

relational-logic style, where the notation R(X,Y) is used

both for Novamente link types R and for predicates R, i.e. it

may mean either

• that a link of type R exists between the node or link

X and the node or link Y

• that an Evaluation link exists between the predicate R

and the List Atom (X, Y)

For the present purposes this distinction is not an important

one (though it is important for Novamente dynamics).

Note also that in Novamente links may span links as well as

nodes.

 Without further ado, the three examples:

Amir is a friend of James.

Inheritance(B,be)

Tense(B,%pres_ongoing)

objTARGET2(B,F)

subjDESCRIPTEE(B,B1)

Inheritance(B1,Amir)

Inheritance(F,friend)

ofDESCRIPTEE(F,O)

Inheritance(O,James)

Amir and James are friends

Inheritance(B,be)

Tense(B,%pres_ongoing)

objTARGET2(B,F)

subjDESCRIPTEE(B,group^777)

Inheritance(B1,Amir)

Inheritance(B1,group^777)

Inheritance(F,friend)

Inheritance(O,James)

Inheritance(O,group^777)

Amir is James's friend

Inheritance(B,be)

Tense(B,%pres_ongoing)

objTARGET2(B,F)

subjDESCRIPTEE(B,O)

Inheritance(B1,Amir)

Inheritance(F,friend)

possFOCUS2(F,B1)

Inheritance(O,James)

This sort of divergence of representation is problematic both

for query processing and for inference.

In order to get from the linguistic representation of this

knowledge exemplified above to a more inference- and

query-processing- friendly representation, a collection of

transformation rules must be applied – rules similar in

theme but different in detail from the Semantic Algorithm

transformations that map syntactic nodes and links into

semantic nodes and links.

In general, at this stage, we require roughly one semantic

transformation for each subject-argument relationship (e.g.

subjAGENT) and each preposition sense (e.g. ofFOCUS)

and also for senses of common “glue” verbs such as “be.”

These transformations are themselves represented as nodes

and links and are executed via Novamente inference.

To give examples of these transformations in any detail

would take us too far afield as it would require us to enlarge

more deeply upon the topic of Novamente knowledge

representation. However, a simple example is the

transformation for ofDESCRIPTEE, which looks like

ForAll R, X, Y: ImplicationLink(foo1, foo2)

foo2 = (ofIze(R))(X,Y)

foo1 = AND(ofDESCRIPTEE(R,Y), R(X))

where ofIze is a Novamente SchemaNode corresponding to

the meaning of the relevant sense of the word of.

Query Processing

Query processing within the INLINK framework is not a

trivial task, because of the above-mentioned phenomenon of

semantic diversity. If the user phrases his query

significantly differently from the way the knowledge

matching the query was entered into the system, then the

match between the query and the knowledge will not be all

that direct within Novamente’s knowledge network – not

unless substantial semantic normalization has been done.

 The “correct” way to do query processing in INLINK

would be using Novamente’s probabilistic inference

module, and this is intended for the next version of the

system. The current INLINK version, however, uses a

simplified approach based on dynamic programming, which

basically takes the query, parses it into a small semantic

network, and then searches Novamente’s memory for other

sub-networks that closely match the query-network. This

approach works quite effectively for small and moderately-

sized knowledge bases, but it lacks the capability for

generalization and analogical and abductive inference that

will be displayed by the inference-based version.

 As a trivial but illustrative example of query processing,

consider the query

Where does Ben work?

subjDESCRIPTEE(work,Ben).

LOCATION(work,$Y).

as matched against the entered knowledge

Ben works in the USA

subjDECRIPTEE(work,Ben)

objLOCATION(work,USA)

Note how the semantic mapping of a question looks just like

the semantic mapping of a statement, except for the

presence of a variable $Y (to be filled in via the action of

query processing). In this case the matching is trivial as the

sentences aren’t complex enough for any “divergence of

form” subtleties to appear.

5 Future Work

The current version of INLINK has successfully

demonstrated the concept of interactive natural language

processing. However, many short-cuts were made in its

construction, and there are a number of well-understood

ways to dramatically improve the system’s parsing

coverage, as well as its ability to learn through experience

and to process queries using analogy and generalization.

In the next version of INLINK, hopefully to be released

in late 2005, several important changes will be made.

First, the link parser will be replaced with a new parser

that utilizes (a modified version of) the same grammar but

operates using Novamente inference and optimization

algorithms rather than the link parser’s parsing algorithm.

This will allow deeper integration between syntactic and

semantic analysis, and improve the linguistic coverage of

the system.

Second, Novamente’s probabilistic reasoning module will

be utilized for query processing and also to aid with

semantic disambiguation and reference resolution.

Third, the framework will be extended to allow language

generation as well as language comprehension. A prototype

of this functionality has already been created; while far from

simple, this “reversal” is fairly conceptually straightforward

within the Novamente/INLINK framework.

And finally, the various processing objects such as

Semantic Algorithms and transformation rules will be

encoded in a way that allows Novamente to adapt them via

experience – thus providing, in principle, a fully adaptive

language processing framework that can modify all aspects

of its behavior in accordance with what it learns from its

human interactors.

References

[Cannesson and Saint-Dizier, 2002] Emmannuelle

Cannesson and Patrick Saint-Dizier. Defining and

Representing Preposition Senses – A preliminary

Analysis, Proceedings of the SIGLEX/SENSEVAL

Workshop on Word Sense Disambiguation. Philadelphia,

July 2002.

[Fellbaum, 1998] Christiane Fellbaum, Editor. WordNet: an

Electronic Lexical Database. MIT Press, Cambridge

Massachussets, 1998.

[Jackson, 1998] Peter Jackson. Introduction to Expert

Systems. Addison-Wesley, New York, 1998.

[Looks et al, 2004] Moshe Looks, Ben Goertzel, Cassio

Pennachin. Novamente: An Integrative Approach to

Artificial General Intelligence. In Proceedings of the

AAAI Symposium on Achieving Human-Level

Intelligence through Integrated Systems and Research,

Washington DC, October 2004.

[Niles and Pease, 2001] Ian Niles and Adam Pease.

Towards a Standard Upper Ontology. In Proceedings of

the 2nd International Conference on Formal Ontology in

Information Systems (FOIS-2001), Ogunquit, Maine,

October 2001

[Patwardhan et al, 2003] Siddharth Patwardhan, Sattanjee

Banerjee and Ted Pedersen. Using Measures of

Semantic Relatedness for Word Sense Disambiguation.

In Proceedings of the Fourth International Conference

on Intelligent Text Processing and Computational

Linguistics, Mexico City, February 2003

[Pelikan, 2002] Martin Pelikan. Bayesian Optimization

Algorithm: From Single-Level to Hierarchy. PhD

Thesis, Department of Computer Science, University of

Illinois at Urbana-Champaign, 2002.

[Sleator and Temperley, 1993] Daniel Sleator and Davy

Temperley. Parsing English with a Link Grammar. Third

International Workshop on Parsing Technologies,

Tilburg, The Netherlands, 1993

