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Abstract

INLINK is an innovative software system enabling an AI 

program to correctly interpret complex English sentences 

via interaction with a human user, who reviews and corrects 

interpretations within a graphical user interface.  While not 

as convenient as unsupervised natural language 

comprehension, this mode of transforming linguistic 

knowledge into formal knowledge is drastically more 

efficient than expert-system-style rule encoding.  

Furthermore, the system becomes more intelligent with 

time, via adaptively learning from the feedback humans give 

it during the interactive interpretation process.  The 

computational language processing inside the system is 

carried out via a combination of the Sleator and Temperley 

link parser with a collection of semantic mapping rules and 

special algorithms for semantic disambiguation, reference 

resolution and entity extraction.  Query processing is carried 

out via dynamic programming.  The system is built within 

the Novamente integrative AI framework, and a more 

sophisticated version involving probabilistic inference and 

replacing the link parser with a more advanced parsing 

framework is currently under construction.

1 Introduction

INLINK
1 

is a software system designed to enable interactive 

natural language understanding.  This refers to a modality in 

which users enter sentences into a graphical user interface 

which is connected to an AI system, and then interact with 

the user interface to ensure that it has come to a correct 

understanding of their sentences.    

The creation of the system has been motivated by the 

practical need to transform complex knowledge from textual 

form into abstract, logical, relational form.   Currently the 

standard way of doing this is using expert-system-style 

knowledge encoding [Jackson, 1998], but the expert system 

approach is extremely slow and requires highly trained 

users, so an alternative is badly needed.

Interactive knowledge entry is of course not as good as 

purely unsupervised AI-based natural language 
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understanding would be – if the latter worked fully 

effectively.  But lacking human-level AI software, 

interactive natural language entry is currently the best we 

can do.

However, due to the adaptive learning intrinsic in the 

Novamente integrative AI architecture [Looks et al, 2004] 

on which the INLINK framework is based, the system 

learns from experience.  Over time, as enough knowledge is 

entered interactively, the system’s capability for accurate 

unsupervised language understanding will improve.  We 

have already seen this happen, qualitatively, particularly in 

the area of sense disambiguation.

 Here we will discuss INLINK from a user perspective, 

and report some experiences of actual users entering 

knowledge into the system; we will then briefly review the 

computational linguistics and AI underlying the system.  

The treatment of the latter will naturally be brief, but we 

will touch on the key ingredients, which include the 

Novamente AI Engine with its special variety of semantic-

network knowledge representation, and the Sleator and 

Temperley link parser [Sleator and Temperley, 1993].

2 The INLINK Interactive Experience 

From a user perspective, the INLINK system consists of a 

Java user interface that connects to a remote server.  Some 

of the system’s linguistic and AI functionalities are 

explicitly exposed to the user whereas others remain 

concealed in the “back end” of the software application.

 The INLINK interface presents the user with two main 

functionalities: knowledge entry and querying.  To enter 

knowledge, the user creates a “context” or opens an existing 

one, and then enters a series of sentences in that context.  

The entry of each sentence is a multi-step, iterative process; 

and the system explicitly interprets each sentence in relation 

to the other ones in the context.  Typically a context might 

refer to a single news article, or a single message.

Querying is quite similar to knowledge entry, in that it 

also involves interactively entering a sentence within a 

certain query context -- the difference being that the 

sentence is a question rather than a statement, and that in the 

case of querying, the user gets an answer back.  Queries 

may be one-time or persistent; the latter meaning that the 

user is periodically “pushed back” new answers as new 

information comes into the system.

The sentence entry process consists of multiple steps.  

The user types in a sentence and clicks the PROCESS 

button and the system tries to parse the sentence.  

Sometimes it fails and the user needs to reformulate.  When 

the parsing process succeeds – which is most of the time, for 

experienced users – the user is then presented with a 

selection of several parses to choose from.  In the case of 

complex sentences there could be dozens of parses, but for 

simple senses there are often 1, 2 or 3 parses.  The main 

reason we chose the link parser for our first version of 

INLINK is that quite often it finds the correct parse in the 

first few sentences.  

Parses are presented to the user in a simple graphical 

format inspired by the linguistic notion of 

“subcategorization frames.”  For instance, a rough depiction 

of the subcategorization frames view of the sentence “He 

was responsible for the bombing” is as follows:

                       subjAGENT                                  for

responsible = [     he               responsible      bombing ]

                            singular                  %past       uncountable

The view in the actual product looks somewhat different due 

to color coding and clickable hyperlinking.   A typical parse 

of a typical sentence will lead to 3-8 different frames of this 

form, which the user must read and understand in order to 

validate or reject the parse.

 Having selected a parse, the next step is for the user to 

check that the system has chosen the right word meanings 

for the words in the sentence, and the right subject-argument 

relations for various argument-bearing words in the 

sentence.  WordNet [Fellbaum, 1998] is used as the basic 

resource for word meanings, but since WordNet doesn’t 

cover prepositions and other ambiguous function words, we 

have augmented WordNet with our own WordNet-like 

resource covering these additional words.  The user sees the 

definitions INLINK has selected and if one of these isn’t 

right, the user can select the correct one from a menu, or 

create a new word sense.

 Next comes reference resolution: the system guesses, for 

each word in the sentence, whether it refers to some other 

word in the current context or in its general knowledge base.  

The user may correct its guesses and may also enter in new 

referents.  Here some fairly simple heuristics let the system 

guess correctly most of the time.  For instance, quite often 

“he” refers to the last male mentioned in the context.

 Finally, entity categorization involves placing words in 

some basic categories such as person, organization, time, 

place and number.  The system tries to identify all these but 

occasionally it makes errors which the user can correct.

 Having gone through all these steps – which can take  the 

user anywhere between 30 seconds and 10 minutes
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depending on the complexity and novelty of the sentence 

and the savvy of the user – it’s finally time to click 

SUBMIT and send the correctly interpreted sentence to the 

server, where it will be entered into Novamente’s semantic 

network in fully logical, relational form.

Practical Experience with INLINK

How well does this somewhat complex interactive 

process work in practice?  In late 2004 two individuals 

untrained in computer science or linguistics began using the 

INLINK system to input a body of knowledge regarding 

real-world events.  Feedback from these users led to a 

number of refinements to the interface and the parser – but 
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overall the reported user experience has been reasonably 

positive so far.  

The most difficult aspect of INLINK, from a user 

perspective, has proved to be the disambiguation of 

prepositions and subject-argument relationships.  Also, the 

error rate of users in parse selection has been found to be 

fairly high for long and complex sentences, but fairly low 

for short sentences.  Thus users are now strongly 

encouraged to break long sentences down into series of 

short sentences – a practice that causes INLINK to parse a 

higher percentage of sentences anyway.  The system’s 

reference resolution capability makes it easy to link a series 

of short sentences together.

Users become competent fairly easily at rephrasing 

sentences into series of short sentences that INLINK could 

easily understand.  The following example shows a sentence 

from a test corpus in its original form, and then in the form 

in which it was rephrased for INLINK comprehension:

Original sentence:

THE SOURCE LATER FOUND OUT THAT 

ALTHOUGH NO SUCH MEETING HAD EVER 

TAKEN PLACE, HASSAN AL HURDABI TOLD 

HER HOW WELL HIS PRESENTATION HAD 

BEEN RECEIVED BY THE INTERNATIONAL 

AUDIENCE.

Rephrased sentence (perfectly comprehend-

ed):

The source later found out that the meeting 

never occurred. 

Hurdabi told her the presentation of Hurdabi 

had been received well by the international 

audience.

3 The Novamente AI Engine

INLINK has been constructed within the Novamente 

integrative AI framework.  While the current version of 

INLINK makes only modest use of Novamente’s learning 

and reasoning capabilities, it makes heavy use of 

Novamente’s knowledge representation, which is a special 

form of semantic network.

 The Novamente AI Engine is a unique, integrative AI 

architecture with general intelligence ambitions, which 

bridges the gap between symbolic and subsymbolic AI 

using a complex systems approach.   It is implemented in 

C++ for Linux for efficiency and scalability, and architected 

to support distributed computing.  AI-wise, Novamente uses 

two main cognitive tools – Probabilistic Term Logic (PTL) 

and the Bayesian Optimization Algorithm (BOA) [Pelikan, 

2002] -- to generate numerous cognitive processes operative 

in its multiple functionally specialized lobes.    

The real essence of the Novamente design lies in its 

learning dynamics, but we will not broach that topic here, 

though we will mention some relevant uses of Novamente-

based probabilistic inference a little later on.  The aspect of 

Novamente most relevant to the current version of INLINK 

is its knowledge representation, which we will now briefly 

discuss.  

Novamente Knowledge Representation

Knowledge representation in Novamente involves two 

levels, the explicit and the emergent: we will discuss only 

the former here, for sake of compactness and simplicity.  

Emergent knowledge in Novamente has to do with 

activation patterns emerging from the action of Novamente 

dynamics on explicitly represented Novamente knowledge. 

 Explicit knowledge representation in Novamente involves 

discrete units called Atoms, which are of several types: 

nodes, links, and containers (the latter two are ordered or 

unordered collections of atoms).  The network of nodes, 

links and containers can be thought of as a “knowledge 

network,” similar but not identical to traditional semantic 

networks.

Each Atom is associated with a truth value, indicating, 

roughly, the degree to which it correctly describes the 

world. Novamente has been designed with several different 

types of truth values in mind; the simplest of these consists 

of a pair of values denoting probability and weight of 

evidence.  All Atoms also have an associated attention 

value, indicating how much computational effort should be 

expended on them. These contain two values, specifying 

short and long term importance levels.

  Novamente node types include 

• ConceptNodes, which derive their meaning via 

interrelationships with other nodes

• PerceptNodes: nodes representing perceptual 

inputs into the system (e.g., pixels, words, points in 

time, etc.)

• TimeNodes representing moments and intervals of 

time

• PredicateNodes representing complex patterns

• SchemaNodes embodying procedures 

  SchemaNodes and PredicateNodes are nodes 

containing procedures that output Atoms and truth values, 

respectively.  Procedures in Novamente are objects that 

produce an output, possibly based on a sequence of atoms as 

input. These objects contain structures called generalized 

combinator trees -- small computer programs written in a 

special language utilizing ideas from combinatory logic as 

originally introduced in [Curry and Feys, 1958]. 

There are also special-purpose predicates that, instead of 

containing combinator trees, represent specific queries that 

report to the Novamente system some fact about its own 

state – these are called “feeling nodes”.  And finally, some 

predicates may also be designated as “goal nodes”, in which 



case the system’s GoalSatisfaction MindAgent allocates 

effort towards making them true.

Links are Atoms that represent relationships between 

other Atoms, such as fuzzy set membership, probabilistic 

logical relationships, implication, hypotheticality, and 

context.  The complete list of (a few dozen) types and 

subtypes of links used, and the justifications for their 

inclusion, are omitted here for brevity.  However, the most 

essential links are

• Inheritance links (representing probabilistic logical 

implication)

• Similarity links (a symmetric version of 

Inheritance)

• Evaluation links (representing the relation between 

a predicate and its argument)

• ExecutionOutput links (representing the 

application of a function to an argument).  

INLINK also makes heavy use of some specialized links 

such as WSLinks (WordSenseLinks), that links WordNodes 

(a kind of PerceptNode) to ConceptNodes.

4 The INLINK Language Processing Pipeline

We now briefly describe what happens inside the INLINK 

software system, utilizing the Novamente integrative AI 

architecture and knowledge representation and enabling the 

user experience described in Section 2 above.

The current version of the INLINK NL comprehension 

pipeline consists of three stages.  In the first stage, the 

syntax-processing component uses a lightly customized 

version of the Sleator and Temperley “link parser,” and a 

collection of software objects called “Semantic 

Algorithms,” to convert an English sentence into a list of 

possible semantic representations (“synsem parses”).   Also, 

at this stage, a collection of commercial and open-source 

entity extractors is used to mark up words and phrases in the 

sentence that are likely to correspond to particular types of 

entities like people, places and times.

In the second stage, the Novamente AI Engine chooses 

the best representations from the list and disambiguates 

them by finding specific nodes that represent the meanings 

of words and argument relations.  As noted above, users are 

able to manually override Novamente’s choices regarding 

parse selection and disambiguation by selecting alternate 

choices within the INLINK user interface.

Finally, once this is done, the knowledge embodied in the 

user’s sentence is relayed to Novamente, where it can be 

queried and reasoned about.

Link Grammar

Link grammar is an unusual NL parsing framework in that it 

does not involve an explicit notion of phrase structure.  This 

causes it to deal with some linguistic constructs awkwardly, 

but it also allows the link parser to rapidly find correct 

parses within its top 1-5 choices in very many cases.

 For instance, the link grammar parse structure for the 

sentence

The cat chased a snake

looks like:

    +----------------Xp---------------------------+

    +-----Wd----+                  +----Os---+     |   

    |                +-Ds-+---Ss--+    +-Ds-+     |

    |               |        |         |     |      |     |

LEFT-WALL the cat.n chased.v a snake.n . 

Each of the links shown joins two words and has a particular 

type which embodies a particular aspect of syntax.  For 

instance, the S link goes between a subject and a verb; the O 

link goes between an object and a verb.  

 The link grammar dictionary assigns a collection of link 

types to each syntactic sense of each word.  The parsing 

process involves drawing links connecting words, 

consistently with the link parser dictionary and with a set of 

constraints including the rule that the links in a sentence 

should form a connected graph, and should not cross.

Mapping Parse Trees into Semantic Structures

The output of the link parser is a collection of syntactic links 

spanning WordNodes.  These must then be turned into 

Novamente-style semantic nodes and links (e.g. logical 

Inheritance links, and Evaluation links joining semantically 

meaningful predicates to their arguments), via the combined 

action of a pool of Semantic Algorithm objects.

A very simple example of an INLINK Semantic 

Algorithm is the rule stating that transitive verbs (a syntactic 

category) map into transitive actions (a semantic concept).   

Of course, in itself this is not a very useful semantic 

algorithm, because it’s so overly simple.  In fact different 

transitive verbs have different semantics, which leads to a 

collection of subcategories of TransitiveAction.  

 Very roughly one might say that one Semantic Algorithm 

exists corresponding to each link type in the link grammar.  

But this rule of thumb is broken many times: for instance, 

ditransitive verbs are not handled very naturally in the link 

grammar, so the Semantic Algorithms that handle them have 

to deal with multiple link grammar links.  And conjunctions 

are handled awkwardly by the link grammar, largely in its 

“postprocessor” phase, so these must be handled somewhat 

complexly at the Semantic Algorithm stage.

A simple system of semantic “case roles” is used by 

Semantic Algorithms to mediate the transformation from 

natural language parses into Novamente nodes and links.  

For example, the object of a verb may be assigned roles 

such as objTARGET or objDESCRIPTEE.  

http://www.link.cs.cmu.edu/link/dict/section-X.html
http://www.link.cs.cmu.edu/link/dict/section-W.html
http://www.link.cs.cmu.edu/link/dict/section-O.html
http://www.link.cs.cmu.edu/link/dict/section-D.html
http://www.link.cs.cmu.edu/link/dict/section-S.html
http://www.link.cs.cmu.edu/link/dict/section-D.html


INLINK’s case roles are partially based on the scheme 

defined in [Cannesson and Saint-Dizier, 2002] and are also 

closely related to those used in other knowledge resources 

such as the SUMO ontology [Niles and Pease, 2001], a fact 

which facilitates the integration of SUMO knowledge into 

Novamente to aid with reasoning on nodes and links derived 

via INLINK.

Semantic Disambiguation and Reference 

Resolution

Semantic disambiguation, in the current version of INLINK, 

is carried out partly using WordNet based algorithms 

loosely similar to those in [Patwardhan et al, 2003].  

However, we have found that the subtlest aspects of 

semantic disambiguation have to do with words and 

linguistic constructs not covered by WordNet: prepositions 

and subject-argument relationships, for example.  

In practice, in an interactive context, it is not very hard to 

guess the correct meaning of a noun, verb, adverb or 

adjective.  Such words tend to be used in the same sense 

repeatedly by the same user, and very strongly tend to be 

used in the same sense repeatedly within the same context.  

On the other hand, a word like “by” will generally be used 

in different senses from sentence to sentence.

 In order to handle this difficulty we have implemented an 

adaptive algorithm, which assigns each preposition or 

subject-argument relationship a sense based on the senses 

more recently assigned to the entity when used in 

combination with words similar or identical to the words it’s 

currently used with.  For instance, if user types in the phrase 

”He walked by the store,” and tells INLINK the correct 

meaning of “by” in this context, then INLINK will make the 

correct guess for the sense of “by” next time it sees the 

sentence “She drove by the restaurant.”  

 Reference resolution is handled in a similar manner: 

pronouns and other words that explicitly require referents 

are assigned referents based on analogy to recent history, a 

simple approach that works quite well.  In this case some 

very simple adaptive learning is able to effectively leverage 

a modest amount of user feedback.  Usually INLINK 

guesses the referent of “he” correctly, but if it gets it wrong 

the first time in a particular context and is corrected, it will 

very rarely get it wrong the second time.

Semantic Normalization of Linguistically-

Structured Knowledge 

One problem that arose immediately upon trying to apply 

Novamente’s probabilistic inference algorithms to the 

output of INLINK’s semantic algorithms was the wide 

divergence of representations provided for highly 

semantically similar sentences.  To illustrate this issue, we 

will show here three representations for the following three 

almost-semantically-identical sentences, produced by 

INLINK’s semantic analysis component.  

For sake of compactness, in these examples we omit 

WSLinks and the like, and show only semantically 

meaningful links between ConceptNodes.  ConceptNodes 

and SpecificEntityNodes are denoted by the names of the 

WordNodes most closely linked to them, and other nodes 

such as those denoting tense (e.g. %pres_ongoing) are 

denoted by intuitive shorthand names

Finally, in these examples, links are shown in a 

relational-logic style, where the notation R(X,Y) is used 

both for Novamente link types R and for predicates R, i.e. it 

may mean either

• that a link of type R exists between the node or link 

X and the node or link Y

• that an Evaluation link exists between the predicate R 

and the List Atom (X, Y)

For the present purposes this distinction is not an important 

one (though it is important for Novamente dynamics).    

Note also that in Novamente links may span links as well as 

nodes.  

 Without further ado, the three examples:

Amir is a friend of James.

Inheritance(B,be)

Tense(B,%pres_ongoing)

objTARGET2(B,F)

subjDESCRIPTEE(B,B1)

Inheritance(B1,Amir)

Inheritance(F,friend)

ofDESCRIPTEE(F,O)

Inheritance(O,James)

Amir and James are friends

Inheritance(B,be)

Tense(B,%pres_ongoing)

objTARGET2(B,F)

subjDESCRIPTEE(B,group^777)

Inheritance(B1,Amir)

Inheritance(B1,group^777)

Inheritance(F,friend)

Inheritance(O,James)

Inheritance(O,group^777)

Amir is James's friend



Inheritance(B,be)

Tense(B,%pres_ongoing)

objTARGET2(B,F)

subjDESCRIPTEE(B,O)

Inheritance(B1,Amir)

Inheritance(F,friend)

possFOCUS2(F,B1)

Inheritance(O,James)

This sort of divergence of representation is problematic both 

for query processing and for inference.

In order to get from the linguistic representation of this 

knowledge exemplified above to a more inference- and 

query-processing- friendly representation, a collection of 

transformation rules must be applied – rules similar in 

theme but different in detail from the Semantic Algorithm 

transformations that map syntactic nodes and links into 

semantic nodes and links.  

In general, at this stage, we require roughly one semantic 

transformation for each subject-argument relationship (e.g. 

subjAGENT) and each preposition sense (e.g. ofFOCUS) 

and also for senses of common “glue” verbs such as “be.”  

These transformations are themselves represented as nodes 

and links and are executed via Novamente inference.   

To give examples of these transformations in any detail 

would take us too far afield as it would require us to enlarge 

more deeply upon the topic of Novamente knowledge 

representation.   However, a simple example is the 

transformation for ofDESCRIPTEE, which looks like 

ForAll R, X, Y: ImplicationLink( foo1, foo2)

foo2 = ( ofIze(R) )(X,Y)

foo1 = AND( ofDESCRIPTEE(R,Y), R(X) )

where ofIze is a Novamente SchemaNode corresponding to 

the meaning of the relevant sense of the word of.

Query Processing

Query processing within the INLINK framework is not a 

trivial task, because of the above-mentioned phenomenon of 

semantic diversity.  If the user phrases his query 

significantly differently from the way the knowledge 

matching the query was entered into the system, then the 

match between the query and the knowledge will not be all 

that direct within Novamente’s knowledge network – not 

unless substantial semantic normalization has been done.

 The “correct” way to do query processing in INLINK 

would be using Novamente’s probabilistic inference 

module, and this is intended for the next version of the 

system.  The current INLINK version, however, uses a 

simplified approach based on dynamic programming, which 

basically takes the query, parses it into a small semantic 

network, and then searches Novamente’s memory for other 

sub-networks that closely match the query-network.  This 

approach works quite effectively for small and moderately-

sized knowledge bases, but it lacks the capability for 

generalization and analogical and abductive inference that 

will be displayed by the inference-based version.

 As a trivial but illustrative example of query processing, 

consider the query

Where does Ben work?

subjDESCRIPTEE(work,Ben).

LOCATION(work,$Y).

as matched against the entered knowledge

Ben works in the USA

subjDECRIPTEE(work,Ben)

objLOCATION(work,USA)

Note how the semantic mapping of a question looks just like 

the semantic mapping of a statement, except for the 

presence of a variable $Y (to be filled in via the action of 

query processing).  In this case the matching is trivial as the 

sentences aren’t complex enough for any “divergence of 

form” subtleties to appear.

5 Future Work

The current version of INLINK has successfully 

demonstrated the concept of interactive natural language 

processing.  However, many short-cuts were made in its 

construction, and there are a number of well-understood 

ways to dramatically improve the system’s parsing 

coverage, as well as its ability to learn through experience 

and to process queries using analogy and generalization.

In the next version of INLINK, hopefully to be released 

in late 2005, several important changes will be made.  

First, the link parser will be replaced with a new parser 

that utilizes (a modified version of) the same grammar but 

operates using Novamente inference and optimization 

algorithms rather than the link parser’s parsing algorithm.  

This will allow deeper integration between syntactic and 

semantic analysis, and improve the linguistic coverage of 

the system.  

Second, Novamente’s probabilistic reasoning module will 

be utilized for query processing and also to aid with 

semantic disambiguation and reference resolution.  

Third, the framework will be extended to allow language 

generation as well as language comprehension.  A prototype 

of this functionality has already been created; while far from 

simple, this “reversal” is fairly conceptually straightforward 

within the Novamente/INLINK framework.

And finally, the various processing objects such as 

Semantic Algorithms and transformation rules will be 



encoded in a way that allows Novamente to adapt them via 

experience – thus providing, in principle, a fully adaptive 

language processing framework that can modify all aspects 

of its behavior in accordance with what it learns from its 

human interactors.
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