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No one has tried to make a thinking machine….  

The bottom line is that we really haven't progressed too far 

toward a truly intelligent machine. 

We have collections of dumb specialists in small domains; 

the true majesty of general intelligence still awaits our attack.

…

We have got to get back to the deepest questions of AI and 

general intelligence and quit wasting time on little projects 

that don't contribute to the main goal.”

-- Marvin Minsky

(as interviewed in Hal’s Legacy, Edited by David Stork, 2000)

1 Introduction

The Novamente AI Engine is a novel software architecture that, unlike most 

contemporary AI projects, is specifically oriented towards artificial general intelligence 

(AGI), rather than being restricted by design to one particular domain, or narrow range of 

cognitive functions.  

Novamente integrates aspects of prior AI projects and approaches, including 

symbolic, neural-network, evolutionary programming and reinforcement learning.  

However, its overall architecture is unique, drawing on system-theoretic ideas regarding 

complex mental dynamics and associated emergent patterns.  Thus Novamente addresses 

the problem of “creating a whole mind” in a novel way through this integrative 

mechanism.

Novamente can be integrated with conventional software applications, enhancing 

their intelligence.   It can also support radical new forms of human-computer interaction 

which includes a novel interface for mixed human/formal language conversation between 

humans and Novamente systems.



The overall mathematical and conceptual design of the Novamente AGI system is 

described in a series of manuscripts being prepared for publication in late 2005 or early 

2006 (Goertzel and Pennachin, in prep.; Goertzel, Ikle’ and Goertzel, in prep.; Goertzel, 

in prep.).  The existing codebase implements roughly 60% of the design, and is being 

applied in bioinformatics and other domains.
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This article gives a high-level overview of the Novamente AI design, with a 

specific focus on comparing Novamente to the human brain/mind.  Although 

Novamente’s design was inspired in large part by cognitive science, it is not intended as a 

simulation of human intelligence; so this comparison is intended to reveal numerous 

differences as well as similarities.  However, human intelligence is the best example of 

general intelligence we currently have, and for this reason the comparison seems very 

much worth drawing.

2 The Value of the Cognitive Sciences for AGI

The traditional disciplines of psychology and brain science, prior to the last few 

decades, offered extremely little to the would-be AGI designer.  Since the emergence of 

cognitive science and cognitive neuroscience, things have gotten a little better.  The state 

of knowledge in these disciplines is not yet sufficient to give detailed prescriptions for the 

construction of AGI systems.  But these bodies of knowledge can provide substantial 

inspiration for AGI design. 

On the one hand, the cognitive sciences provide very clear advice regarding what 

the overall “conceptual architecture” of an AGI system should be like, if that AGI system 

is going to cognize in a manner even vaguely resembling that of human beings.  We 

know what the major regions of the brain do, and we also have a decent working 

decomposition of human cognition into a list of interacting yet significantly distinct 

faculties.  This high-level architecture can be emulated in AGI systems.

On the other hand, the cognitive sciences provide a variety of suggestions 

regarding specific low-level mechanisms for carrying out intelligent processing, such as, 

perception, learning and memory.  However, the low-level messages from the cognitive 

sciences are more controversial than the high-level ones for two reasons.  First, there is 

less agreement on them among contemporary experts.  And second, it’s not always clear 

that emulating human psychological or neural behavior is a practical approach to 

implementing intelligence on radically un-brain-like hardware.  

Cognitive theorists recognize that there is more to the human mind/brain than its 

high-level architecture and low-level mechanisms.  However, the cognitive sciences to 

date have had relatively little to day about the crucial “intermediate level” of intelligence.  

This is the main reason that the cognitive sciences don’t yet provide really powerful 

prescriptive guidance to AGI designers.  The cognitive sciences tell us what major parts a 

mind/brain should have, and they describe some low-level mechanisms that can help 
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The reason the development system has been so slow has been quite simple: lack of 

resources.  There are no staff currently devoted to Novamente as an AGI system; rather, AGI 

development has been done by scientists and engineers working on Novamente-based narrow-AI 

applications, working in their “spare time.”



these parts to carry out their functions, but they say precious little about how the different 

parts all work together, and how the low-level mechanisms coordinate to give rise to 

higher-level dynamics.

As an example of the extreme paucity of intermediate-level explanations, consider 

the rather critical notion of the “self.”  Thomas Metzinger (2004) has recently given a 

masterful treatment of the philosophy and neuropsychology of self, and has argued 

convincingly that a vast majority of the learning, thinking, perceiving and remembering 

that we humans do occurs in the context of the “phenomenal selves” that we construct in 

order to model ourselves and our relationships with the world.  But as Metzinger points 

out, while contemporary cognitive neuroscience tells us a lot about various dysfunctions 

of self-construction and self-awareness, it doesn’t say hardly anything about how selves 

are built by mind/brains.  We know the self-building process involves the coordinated 

activity of a number of different brain regions, and we can list these; and we know some 

basic neural mechanisms that assist with the process, and can be diverted from their 

normal behavior via disturbances in the levels of various chemicals in the brain.  But 

what does this “coordinated activity” consist of?  How are chemical and neuron-level 

processes orchestrated across various brain regions to allow the human brain to model the 

mind that emerges from it in an approximately yet contextually-very-useful way?  On 

issues like this, the cognitive sciences are basically silent.   

In the world of cognitive neuroscience, controversy continues regarding the 

“binding problem” (Singer, 2001), the question of how all the neuro-sensory traces 

corresponding to different parts of an observed image are bound together in the brain to 

form a common, holistically perceived percept.  Of course this is an important thing to be 

thinking about – but, when this kind of basic issue is still under dispute, it should be clear 

that, barring a sudden breakthrough, we’re not all that close to understanding how 

cognitive traces reflecting memories and inferences about one’s own self are bound into a 

unified self-system.

Next, as a much simpler example of the paucity of intermediate-level 

explanations, consider the issue of the relevance of temporal pattern-recognition to visual 

object-recognition.  Jeff Hawkins (2004) has suggested that object recognition is based 

on hierarchical recognition of time series of visual sensations.  The more traditional view 

argues that, while temporal analysis isn’t totally irrelevant, it’s not critical to the ordinary 

object recognition process?  Who’s right?  No one knows.  Most likely one could build 

computer vision systems based on either approach.  The known architecture of the visual 

cortex supports either approach, as do the basic neurocognitive dynamics of Hebbian 

learning and neural-net activation spreading.  This is a fairly simple, fairly low-level 

issue of how basic learning/memory mechanisms combine to yield the function known to 

be associated with a particular brain region of relatively well-known architecture.  This is 

an easier issue than Metzinger’s question about the neural basis of the construction of the 

phenomenal self – but again it illustrates the type of explanation that the cognitive 

sciences currently provide only very infrequently.

Finally, consider an issue relating to logical reasoning.  At their best, humans are 

capable of carrying out highly complex trains of logical reasoning – including e.g. 

mathematical proofs, carefully orchestrated multi-part criminal bank fraud operations, 

and the construction of the concept of “logical reasoning” itself.  Yet, even intelligent 



humans routinely perform poorly on simple reasoning puzzles such as the Wason card 

task (Wason, 1966).  Why?  It’s not that we’re stupid, it’s that our capability for logical 

reasoning is integrated into our overall mind-structure in a particular way that only allows 

it to display its full potential under certain conditions.  Psychological experiments have 

shown that the propensity for accurate reasoning depends highly on various phenomena 

such as the familiarity of the domain being reasoned about.  But yet, mathematically 

trained individuals will almost never make errors like the one demonstrated in the typical 

response to the Wason card task.  Again: why?  Are mathematically trained individuals 

using a different reasoning algorithm than ordinary people, or are they just “tuning” the 

universal reasoning algorithm in a different way, or connecting the universal reasoning 

subsystem to other brain subsystems in a different way, etc?  Experimental psychology 

and neuroscience will approach this issue slowly and indirectly over the next decades, but 

right now an answer is nowhere near.

2.1 What’s the AGI Designer To Do?

Given the current state of the cognitive sciences, the present-day AGI designer 

has several recourses.   

Firstly, he can simply wait until the cognitive sciences advance further, and give 

more thorough prescriptions for AGI design.  

Secondly, he can ignore the cognitive sciences and attempt to design an AGI on 

other grounds – e.g. based on the mathematics of reasoning, or based on general 

considerations regarding the dynamics of complex self-organizing systems.  Of course 

it’s worth reflecting that many of these “other grounds” –such as mathematical logic -- 

were originally conceived as qualitative models of human thought.  But still, in spite of 

this historical fact and the strong intuitive feelings associated with it, the empirical 

cognitive sciences have not yet substantiated any deep connections between mathematical 

logic and human cognition.    

Or, thirdly, he can seek to create an AGI design that is consistent with the 

information provided by the cognitive sciences, but also introduces additional ideas 

filling in the gaps they leave.  This approach has a great deal of flexibility, of course.  

This is the approach we’ve taken in designing the Novamente AI system.  

The overall goal of the Novamente AI project is not to create a human-like digital 

mind.  While the human brain/mind is impressive, it has serious flaws with which we’re 

all quite familiar (Pietelli-Palmarini, 1996), and we don’t feel that replicating these flaws 

in software is a particularly desirable goal.   Also, it’s clear that the nature of human 

intelligence has been strongly influenced by the particularities of human embodiment – 

and similarly, we’d expect a digital mind to be strongly influenced by the particularities 

of its own embodiment, which (barring huge advances in android technology) will be 

quite different from that of humans.  These caveats aside, however, we have a great deal 

of respect for the fact that the human brain/mind actually exists and functions, so we feel 

it would be foolish not to learn from it all that we can.  

The high-level architecture of the Novamente system is closely inspired by well-

known facts about the high-level architecture of human cognition.  The particular 

learning, reasoning and perceptual mechanisms within Novamente are inspired by human 



psychology and neuroscience, but more loosely.  At this level, rather than seeking to 

emulate the details of how humans do things, we have sought to emulate the spirit of 

human processing.  This choice was made largely with computational efficiency in mind.  

The brain contains a massive number of fairly slow and noisy processing units, and has 

an architecture in which memory and processing are largely overlapping concepts; on the 

other hand, modern computer networks have a small number of very fast and accurate 

processors, and an architecture in which memory and processing are distinct.  These 

differences mean that the mechanisms that the brain has evolved, to make effective use of 

the physical wetware allocated to it, are not very well suited to efficient digital computer 

implementation.  From an AGI point of view, until/unless radically more brainlike 

computer hardware comes along, the most sensible AGI cognitive-microdesign strategy 

seems to be to try to understand the essence of each human cognitive function, then 

figure out a way to implement this essence in a digital-computer-friendly way, without 

worrying about exactly how this function is implemented in the brain via neurons, 

neurotransmitters, extracellular charge diffusion and the like.

To bridge the gap between the high-level architecture and the low-level cognitive 

mechanisms, Novamente makes use of a novel theoretical approach called SMEPH, for 

“Self-Modifying, Evolving Probabilistic Hypergraphs”.  The SMEPH approach provides 

a mathematical and conceptual framework in which answers to questions such as “How 

does the phenomenal self emerge?” or “Does object recognition use hierarchical pattern 

recognition on temporal or static information?” can be crisply formulated, analyzed, and 

discussed.  It doesn’t, in itself, resolve all these questions – it just gives an approach to 

exploring solutions.  The Novamente design applies the SMEPH approach in particular 

ways, which are intended to provide adequate though almost surely not optimal solutions 

to the main problems of intermediate-level AGI mind-design.

2.2 Competing Approaches to AGI and their Grounding in the 

Cognitive Sciences

Before turning to Novamente, it’s worth briefly discussing how competing 

approaches to AGI relate to contemporary knowledge from the cognitive sciences.   

The majority of software systems with explicit AGI ambitions are founded more 

directly on cognitive science than cognitive neuroscience.  The reason for this is the 

obvious one noted above: neuroscience doesn’t really give enough guidance.  On the 

other hand, at least cognitive psychology says something about every major aspect of 

intelligence, even though its pronouncements aren’t always convincing.

There are a number of narrow-AI systems based on qualitative models of 

neurodynamics – these are the well-known “neural network” algorithms, which have 

proved very useful in a variety of application domains, and have led to a lot of interesting 

mathematical theory (see e.g. Amit, 1989 for classical results).  However, most neural net 

systems are basically using crude models of the microstructure and microdynamics of the 

brain to carry out particular learning or memory functions.  They’re not trying to emulate 

the overall structure of the brain as it gives rise to unified general intelligence.  



One well-known exception is Stephen Grossberg’s work (Grossberg, 1987 is the 

classic reference), which involves a collection of reasonably accurate neural net models 

of particular brain regions.  Another is Peter Voss’s (2005) A2I2 architecture, which is 

loosely based on the “neural gas” approach to neural net modeling, but uses a number of 

innovative structures and algorithms in a quest to make a specially-structured neural 

network learn from experience in a simple simulated environment, in a manner similar to 

an intelligent nonhuman mammal or a young child.   Another exception is Hugo de 

Garis’s CAM-Brain project (De Garis and Korkin, 2002), which is based on a 

combination of brain-based ideas and more computer-science-based AI concepts: in the 

CAM-Brain based “RoboKoneko” design, small neural networks are trained using a 

genetic algorithm and then arranged in a network-of-networks to carry out robot 

perception and control functions.

The best-funded loosely-AGI-oriented effort currently underway is almost surely 

the Cyc project (Lenat and Guha, 1999).   Cyc is based on a particular theory of human 

intelligence which holds that declarative knowledge is the most important aspect of mind.  

Doug Lenat began Cyc with clear AGI ambitions, but in the decades since the project’s 

inception, the Cyc team has in fact spent nearly all of their effort building a knowledge 

base and supplying it with logical inference tools, rather than creating a coherent, 

integrated digital intelligence.  Currently there is a “Cognitive Cyc” project  underway 

within Cycorp, whose aim is to move Cyc development in more of a holistic-AGI 

direction based on their existing knowledge base and reasoning engine.
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SOAR (Laird et al, 1987) and ACT-R (Anderson et al, 1997) are two cognitive-

psychology-inspired AI systems that aim to model integrated intelligence.  SOAR has 

been used to simulate the behavior of human pilots, with moderate success (Jones et al, 

1993).   These systems focus mainly on modeling human memory and logical problem-

solving, but even in this domain their scope is quite limited.  

There are also some innovative AGI-oriented systems founded on advanced 

theories of human logical reasoning.  Pei Wang’s (1995) NARS inference engine is based 

on a novel form of uncertain term logic.  Stuart Shapiro’s Sneps system (2000) is based 

on a variety of paraconsistent logic, and has been used (Santore et al, 2003) to control 

simple behaviors of an agent in a simulated world.

Jason Hutchens’ HAL chat system (see www.a-i.com) seeks to emulate human 

development psychology – with a focus on language acquisition -- using an underlying 

statistical learning methodology.   There are also a few robotics projects, e.g. Rodney 

Brooks’ Cog work (Adams et al, 2000), that aim at AGI in the long term.  While not 

based on detailed models of the brain, Brooks’ work seeks to qualitatively emulate the 

way perception, action and decision occur in biological systems.   

In all, we see that existing AGI projects have all made use of inspiration from the 

cognitive sciences in various ways.  None has made a serious attempt to simulate brain 

function because not enough is known about the latter. Some, notably SOAR and ACT-R, 

have made serious attempts to emulate human psychological function, but even so they 

have left out a lot of extremely important components.  

The Novamente project is unique among efforts at AGI in that it possesses a 

concrete and detailed mathematical, conceptual and software design, that provides a 
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unified treatment of all major aspects of intelligence as detailed in cognitive science and 

computer science.



3 Conceptual Underpinnings of Novamente

 The primary motivation behind the Novamente AI Engine is to build a software 

system that can achieve complex goals in complex environments, a synopsis of the 

definition of intelligence given in (Goertzel 1993). The emphasis is on the plurality of 

goals and environments. A chess-playing program is not a general intelligence, nor is a 

data mining engine, nor is a program that can cleverly manipulate a researcher-

constructed microworld. A general intelligence must be able to carry out a variety of 

different tasks in a variety of different contexts, generalizing knowledge between 

contexts and building up a context and task independent pragmatic understanding of itself 

and the world. 

 The Novamente design is founded on a philosophy of mind called the “psynet 

model,” and on the SMEPH mathematical framework for modeling intelligent systems, 

which ties in naturally with the psynet model.  But although these conceptual and formal 

tools were developed largely in the context of AI design, in fact they are general in 

nature, and have insight to shed into the nature of human intelligence as well.  We 

reviewe them here both in preparation for the discussion of Novamente, and as a 

foundation for the principled comparison of Novamente with human cognition.

 One aspect of Novamente’s conceptual foundations that we will emphasize here is 

the notion of experiential interactive learning.  The concepts here is that intelligence most 

naturally emerges through situated experience. Abstract thoughts and representations are 

facilitated through the recognition and manipulation of patterns in environments with 

which a system has sensorimotor interaction; see for example (Boroditsky and Ramscar 

2002) for some elaborations on this notion.  This philosophy implies that, from a 

Novamente perspective, a project such as embodiment in a robot or a simulated agent is 

more fundamentally interesting than for instance work on disembodied natural language 

processing.

3.1 The Psynet Model of Mind

 The abstract principles underlying the Novamente architecture are coherently 

unified in a philosophy of cognition called the psynet model (Goertzel, 1993, 1993a, 

1994, 1997, 2002), which provides a moderately detailed theory of the emergent 

structures and dynamics in intelligent systems. In the model, mental functions such as 

perception, action, reasoning and procedure learning are described in terms of 

interactions between agents. Any mind, at a given interval of time, is assumed to have a 

particular goal system, which may be expressed explicitly and/or implicitly. Thus, the 

dynamics of a cognitive system are understood to be governed by two main forces: self-

organization and goal-oriented behavior. 

More specifically, several primary dynamical principles are posited, including:



• Association. Patterns, when given attention, spread some of this attention to other 

patterns that they have previously been associated with in some way. 

Furthermore, there is Peirce’s “law of mind” (Peirce, 1892), which could be 

paraphrased in modern terms as stating that the mind is an associative memory 

network, whose dynamics dictate that every idea in the memory is an active agent, 

continually acting on those ideas with which the memory associates it.

• Differential attention allocation. Patterns that have been valuable for goal-

achievement are given more attention, and are encouraged to participate in giving 

rise to new patterns.

• Pattern creation. Patterns that have been valuable for goal-achievement are 

mutated and combined with each other to yield new patterns.

• Credit Assignment. Habitual patterns in the system that are found valuable for 

goal-achievement are explicitly reinforced and made more habitual. 

Furthermore, the network of patterns in the system must give rise to the following large-

scale emergent structures

• Hierarchical network. Patterns are habitually in relations of control over other 

patterns that represent more specialized aspects of themselves.

• Heterarchical network. The system retains a memory of which patterns have 

previously been associated with each other in any way.

• Dual network. Hierarchical and heterarchical structures are combined, with the 

dynamics of the two structures working together harmoniously.

• Self structure. A portion of the network of patterns forms into an approximate 

image of the overall network of patterns.

The key to the implementation of these general principles in a practical, mathematically 

sound AGI software design is the SMEPH framework for modeling intelligent systems in 

terms of self-modifying, evolving probabilistic hypergraphs, which will be described 

briefly below.

3.1.1 The Psynet Model and the Human Mind-Brain

 While the psynet model is being considered here mainly in its role as a motivation 

for the Novamente AI design, as originally presented it was applied equally much to 

human psychology as to AI.  Goertzel (1997) sketches compact arguments in favor of the 

psynet model as a conceptual model of human psychology and the structure of the human 

neocortex.  Some of these ideas will be discussed in detail below when Novamente and 

the human brain/mind are contrasted based on modern cognitive-science theories and 

data.  But the general nature of the correspondence is not hard to see.  

Hierarchical structures pervade the brain – the cortex is hierarchical, visual 

perception has been shown to use this physical hierarchy to do hierarchical pattern 

recognition, and a number of theorists have proposed that this principle applies more 



generally (see Hawkins, 2004).  On the other hand the prevalence of association 

structures in the brain has been well-known since the time of Peirce and William James, 

and has been validated via numerous experiments on the structure of memory (Baddeley, 

1999).   The dual network as a general model of the brain’s “concept/percept/action 

interconnection statistics” is not convincingly proven but is highly plausible.  The way 

that self-structures may emerge from dual networks based on experiential learning has 

been discussed in depth in (Goertzel, 1997), with many connections drawn to the 

literature on personality psychology, e.g. Rowan’s (1990) theory of subpersonalities.

The model of the human brain/mind as a system focused on pattern recognition 

and creation is also reasonably well-established, although it has not been systematically 

articulated as often one would like.  Again, Peirce and James established this perspective 

long ago (though using the language of “habits” rather than “patterns”), and it has more 

recently reared its head in the form of algorithmic-information-theoretic models of the 

mind as “compact programs for computing data” (see Solomonoff, 1964, 1964a; or more 

recently, Baum 2004).  The mathematical theory of pattern given in (Goertzel, 1997) 

shows how algorithmic information theoretic models are substantially the same as models 

based on concepts like pattern and habit.

Putting the mind-as-habit-system theme together with the dual-network structure 

– both general principles shown to be harmonious with contemporary cognitive science – 

one obtains a crude argument for the relevance of the psynet model to the human mind-

brain.  The next question becomes one of dynamics.  What do all these patterns do, in 

order to help a mind achieve its goals and maintain its dual network structure?  The 

psynet model posits a kind of evolutionary dynamic on the level of patterns: patterns 

found useful for system goals are reinforced, and combined with each other.  This is a 

form of  “evolutionary learning” (Holland, 1992), which Edelman (1987) and others have 

presented as a model of cognition.  If we accept Edelman’s views we then may portray 

the human mind-brain as an evolving dual network of patterns – i.e., a psynet.

This of course is a speculative, high-level, system-theoretic portrayal of the 

human brain/mind.  However, we believe this is the level of abstraction one must begin 

with if one wishes to create an AGI system using inspiration from the cognitive sciences.  

The knowledge generated by the cognitive sciences so far is too primitive and too 

haphazard to be used as a blueprint for AI.  One first of all needs a common conceptual 

framework for analyzing both human and AI cognitive structures and dynamics – and 

then within this framework, one can see how specific facts from cognitive science may be 

useful for guiding AGI development.

3.2 Experiential Interactive Learning

Based on the premise that a mind is the set of patterns in a brain, the psynet model 

describes a specific set of high-level structures and dynamics for mind-patterns, and 

proposes that these are essential to any sort of mind, human or digital.  These are not 

structures that can be programmed into a system; rather they are structures that emerge 

through the situated evolution of a system – through experiential interactive learning.  



Novamente’s specific structures and dynamics are based on the more general ones 

posited by the psynet model.

The psynet model also contains a theory of the relation between mind, body and 

society that contrasts with the most common perspectives expressed in the AI literature.  

Namely, it maintains that software and mathematics alone, no matter how advanced, 

cannot create an AGI.  What software and mathematics can do, however, is to create an 

environment within which artificial general intelligence emerges through interaction with 

humans in the context of a rich stream of real-world data.  That is: Intelligence most 

naturally emerges through situated and social experience.

It is clear that human intelligence does not emerge solely through human neural 

wetware.  A human infant is not so intelligent, and an infant raised without proper 

socialization will never achieve full human intelligence (Douthwaite, 1997).  Human 

brains learn to think through being taught, and through diverse social interactions.  Our 

experience is that the situation is similar with AGI’s.  The basic AGI algorithms in 

Novamente are not quite adequate for practical general intelligence, because they give 

only the “raw materials” of thought.  What is missing in Novamente “out of the box” are 

context-specific control mechanisms for the diverse cognitive mechanisms.  The system 

has the capability to learn these, but just as critically, it has the capability to learn how to 

learn these, through social interaction.  

A Novamente "out of the box" will be much “smarter” than narrow AI systems, 

but not as robustly intelligent as a Novamente that has refined its ability to learn context-

specific control mechanisms through meaningful interactions with other minds.  For 

instance, once it’s been interacting in the world for a while, it will gain a sense of how to 

reason about conversations, how to reason about network intrusion data, how to reason 

about bio-warfare data – by learning context-dependent inference control schemata for 

each case, according to a schema learning process tuned through experiential interaction.

 This leads us to the concepts of autonomy, experiential interactive learning or 

EIL, and goal-oriented self-modification – concepts that lie right at the heart of the notion 

of Artificial General Intelligence.  

An integrative AI software system may be supplied with specific, purpose-

oriented control processes and in this way used as a data mining and/or query processing 

engine.  This is the approach taken, for example, in the current applications of the 

Novamente engine in the bioinformatics domain.  But this kind of deployment of 

Novamente does not permit it to develop its maximum level of general intelligence.

For truly significant AGI to emerge, an emergent system must be supplied with 

general goals, and then allowed to learn its own control processes via execution of its 

procedural learning dynamics through interaction with a richly structured environment 

along with extensive meaningful interactions with other minds.  

The Novamente system will gain its intelligence through processing relevant data, 

interacting with humans’ in the context of  this data, and providing humans with reports 

summarizing patterns it has observed.  In this process, it will do more than increase its 

knowledge store, it will learn how to learn, and learn about itself.  It will continually 

modify its control schemata based on what it’s learned from its environment and the 

humans it interacts with.  This process of “experiential interactive learning” has been one 

of the primary considerations in Novamente design and development.  



While conversations about useful information will be an important source of EIL 

for Novamente, we suspect that additional tutoring on basic world-concepts like objects, 

motions, self and others will be valuable.  For this purpose we have created a special 

simulated environment for the purpose of instructing Novamente: the AGI-SIM 

simulation world.   

3.2.1 AGI-SIM

AGI-SIM is being developed as an open-source project with the intention of being 

useful for other AGI projects as well as Novamente.  It is based on the open-source 3D 

simulation environment CrystalSpace
3

.  Without going into details on AGI-SIM here, it is 

worth mentioning some of the basic principles that went into its design.

• The experience of an AGI, controlling an agent in a simulated world, should 

display the main qualitative properties of a human controlling their body in the 

physical world. For specific consideration are those qualitative properties which 

help the AGI to relate experiences in the simulated world to the many obvious and 

subtle real-world metaphors embedded in human language. 

• The simulation world should support the integration of perception, action and 

cognition in a unified learning loop, which is crucial to the development of 

intelligence. 

• The sim world should support the integration of information from a number of 

different senses, all reporting different aspects of a common world, which is 

valuable for the development of intelligence. 

With these goals in mind, we have created AGI-SIM as a basic 3D simulation of the 

interior of a building, with simulations of sight, sound, smell and taste.  An agent in AGI-

SIM has a certain amount of energy, and can move around and pick up objects and build 

things.  The initial version doesn’t attempt to simulate realistic physics, but this may be 

integrated into a later version using the ODE  open-source physics simulation package.  

While not an exact simulation of any physical robot, the agent Novamente controls in 

AGI-SIM is designed to bear enough resemblance to a simple physical robot that the 

same control routines should be portable to a physical robot – which is a step we look 

forward to taking, but feel is best postponed until after Novamente’s learning in the 

simulation world is fairly far advanced.

3.3 Self-Modifying, Evolving Probabilistic Hypergraphs

Now how does one move from these conceptual generalities in the direction of a 

concrete design for an AGI system?  There are many different AGI systems consistent 

with the general principles of the psynet model.  As an intermediate level between the 

psynet model and specific AGI system designs, we have developed a mathematical 
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framework for modeling intelligent systems that we call the SMEPH (Self-Modifying, 

Evolving Probabilistic Hypergraph) approach.  Novamente is based on SMEPH, but it is 

not the only way to make an AI system based on SMEPH; another example is the 

Webmind AI Engine (Goertzel et al, 2000) developed in the late 1990’s.  Furthermore, 

SMEPH is intended to be useful for analyzing intelligences that are not explicitly 

architected with SMEPH in mind.  For example, the Hebbian Logic AI design outlined in 

(Goertzel, 2003) is based on neural net ideas rather than explicitly involving SMEPH data 

structures and dynamics, but its emergent structures and dynamics are naturally modeled 

in SMEPH terms.  And many of the ideas in (Goertzel, 1993, 1993a, 1994, 1997) may be 

viewed as applications of SMEPH ideas to the analysis of human cognition (although the 

SMEPH framework had not been fully formalized and abstracted at that point).

SMEPH can be divided into two aspects: a way of representing knowledge (the 

Probabilistic Hypergraph part), and a way of representing dynamics (the Self-Modifying, 

Evolving part).   In psynet model terms, probabilistic hypergraphs may be viewed as a 

particular way of representing patterns.  Self-modification and evolution are key aspects 

of pattern dynamics, which are naturally representable in terms of the hypergraph 

knowledge representation.  Here we will give a brief overview of SMEPH concepts and 

discuss their applicability to the human brain/mind and to Novamente.

3.3.1 Derived Hypergraphs

Now we will explain how, in the SMEPH framework, a complex system in an 

environment can be associated with a “derived hypergraph” capturing important aspects 

of the structure and dynamics of the system.

Before getting started, however, a brief note on terminology is necessary.  In 

mathematics, one can choose to refer to a graph as consisting of nodes and links, or else 

as vertices and edges.  The two pairs of terms mean the same thing.   However, in talking 

about SMEPH and Novamente, we will use the terms in different ways.  We will reserve 

“nodes and links” for talking about objects in Novamente’s explicit knowledge 

representation (which is a hypergraph).  On the other hand, we will use “vertices and 

edges” to talk about parts of an abstract SMEPH hypergraph.  This becomes subtle 

because SMEPH may be used to model Novamente, and according to this modeling, 

sometimes Novamente nodes/links may correspond to SMEPH vertices/edges, but other 

times it will be fuzzy sets of Novamente nodes/links (called “maps”) that correspond to 

SMEPH vertices/edges. 

A hypergraph, in mathematics, typically refers to a graph in which edges can span 

more than two vertices (Berge, 1999).  Hypergraphs as we consider them are even more 

general than that, as we consider edges that can point to edges as well as vertices.   Also, 

we consider weighted hypergraphs, in which edges and vertices come along with sets of 

numbers with particular semantics.  In particular, SMEPH specifies that each edge or 

vertex must be associated with a package of numbers called an AttentionValue, 

specifying how much attention has been paid to it (there may be several different 

AttentionValue numbers corresponding to different time scales.  Novamente uses two, 

called (short-term) “importance” and “long-term importance”).  Also, many edges and 



vertices will be associated with packages of numbers called TruthValues, which indicate 

the probability with which the relationship denoted by the edge or vertex is true.  The 

semantics of an edge or vertex’s TruthValue depends on the particular type of edge or 

vertex, which brings us to a final feature of SMEPH’s formal knowledge representation: 

edges or vertices may have types, drawn from a finite set.  There is a minimal set of edge 

and vertex types associated with SMEPH; modeling particular intelligent systems 

explicitly based on the SMEPH approach may make it natural to introduce additional 

edge or vertex types on a case-by-case basis.

 The basic vertex types contained in the SMEPH approach are: Concept and 

Schema.   These are terms overloaded with meanings, and we use them in SMEPH as 

defined terms, without pretending that our usage accords fully with all natural language 

usages.  

A Concept, in SMEPH, refers to the habitual pattern of activity observed in a 

system when some condition is met.  The condition may refer to something in the world 

external to the system, or to something internal.  For instance, the condition may be 

“observing a cat.”  In this case, the corresponding Concept vertex in the mind of Ben 

Goertzel is the pattern of activity observed in Ben Goertzel’s brain when his eyes are 

open and he’s looking in the direction of a cat.  The notion of “pattern of activity” can be 

made rigorous using mathematical pattern theory (Goertzel, 1997).

Note that logical predicates, on the SMEPH level, appear as particular kinds of 

Concepts, where the condition involves a predicate and an argument.  For instance, 

suppose one wants to know what happens inside Ben’s mind when he eats cheese.  Then 

there is a Concept corresponding to the condition of cheese-eating activity.  But there 

may also be a Concept corresponding to eating activity in general.  If the Concept for X-

eating activity is generally easily computable from the Concepts for X and eating 

individually, then the eating Concept is effectively acting as a predicate.   

A Schema, on the other hand, is like a Concept that’s defined in a time-dependent 

way.   One type of Schema refers to a habitual dynamical pattern of activity occurring 

before and/or during some condition is met.  For instance, the condition might be saying 

the word “Hello.”  In that case the corresponding Schema vertex in the mind of Ben 

Goertzel is the pattern of activity that generally occurs before he says “Hello.”  

Another type of Schema refers to a habitual dynamical pattern of activity 

occurring after some condition X is met.  For instance, in the case of the Schema for 

adding two numbers, the precondition X consists of the two numbers and the concept of 

addition.   The Schema is then “what happens when the mind thinks of adding and thinks 

of two numbers.”

Finally, there are Schema that refer to habitual dynamical activity patterns 

occurring after some condition X is met and before some condition Y is met.  In this case 

the Schema is viewed as transforming X into Y.  For instance, if X is the condition of 

meeting someone who is not a friend, and Y is the condition of being friends with that 

person, then the habitually intervening activities constitute the Schema for making 

friends.  

SMEPH edge types fall into two categories: functional and logical.  Functional 

edges connect Schema vertices to their input and outputs.  The Execution edge denotes a 

relation between Schema, its input and its output, e.g.



Execution make_friends meets_Fred is_friend_of_Fred

The ExecutionOutput (ExOut) edge denotes the output of a Schema in an implicit way, 

e.g.

ExOut say_hello

refers to a particular act of saying hello, whereas

ExOut add_numbers {3, 4, ”addition”)

refers to the Concept corresponding to 7.  Note that this latter example involves a set of 

three entities: sets are also part of the basic SMEPH knowledge representation.  A set 

may be thought of as a hypergraph edge that points to all its members.

Logical edges refer to conditional probabilities: for instance, it may happen that 

whenever the Concept for “cat” is present in a system, the Concept for “animal” is as 

well.  Then we would say

Subset cat animal

On the other hand, it may be that 50% of the time that “cat” is present in the system, 

“cute” is present as well: then we would say

Subset cat animal <.5>

where the <.5> denotes the probability, which is a component of the TruthValue 

associated with the edge.  There is a collection of roughly a dozen different logical edge 

types in SMEPH, which are derived from the Probabilistic Term Logic framework 

(Goertzel, Ikle and Goertzel, in prep.).  We will discuss some of these types in more 

depth in a later section, in the context of Novamente’s closely related usage of PTL.

 In this manner we may define a set of edges and vertices modeling the habitual 

activity patterns of a system when in different situations.  This is called the “derived 

hypergraph” of the system.  Note that this hypergraph can in principle be constructed no 

matter what happens inside the system: whether it’s a human brain, a formal neural 

network, Cyc, Novamente, a quantum computer, etc.  Of course, constructing the 

hypergraph in practice is quite a different story: for instance, we currently have no 

accurate way of measuring the habitual activity patterns inside the human brain.  fMRI 

and PET technologies give only a crude view, though they are continually improving 

(Cabeza and Kingstone, 2001).

 The psynet model comes in here and makes some definite hypotheses about the 

structure of derived hypergraphs.  It suggests that derived hypergraphs should have a dual 

network structure, and that in highly intelligent systems they should have subgraphs that 

constitute models of the whole hypergraph (these are “self systems”).  SMEPH does not 

add anything to the psynet model on a philosophical level, but it gives a concrete 

instantiation to the psynet model’s general ideas.



3.3.2 Probabilistic and Evolutionary Dynamics

 The logical edges in a SMEPH hypergraph are weighted with probabilities, as in 

the simple example given above.  The functional edges may be probabilistically weighted 

as well, since some Schema may give certain results only some of the time.  These 

probabilities are critical in terms of SMEPH’s model of system dynamics; they underly 

one of SMEPH’s three key principles of the dynamics of intelligence,

Principle of Implicit Probabilistic Inference: In an intelligent system, the temporal 

evolution of the probabilities on the edges in the system’s derived hypergraph should 

approximately obey the rules of probability theory.

What “the rules of probability theory” means in this context is a complex issue and is 

addressed in (Goertzel et al, 2005a).  The basic idea is that, even if a system’s underlying 

dynamics has no explicit connection to probability theory, nevertheless it must behave 

roughly as if it does, if it is going to be intelligent.  The “roughly” part is important here – 

it’s well known that humans are not terribly accurate in explicitly carrying out formal 

probabilistic inferences.  And yet, in practical contexts where they have experience, 

humans can make quite accurate judgments – which is all that’s required by the above 

principle, since it’s the contexts where experience has occurred that will make up a 

system’s derived hypergraph.

 The next key dynamical principle of SMEPH is evolutionary, and states 

Principle of Implicit Evolution: In an intelligent system, new Schema and Concepts will 

continually be created, and the Schema and Concepts that are more useful for achieving 

system goals (as demonstrated via probabilistic implication of goal achievement) will 

tend to survive longer.

Note that this principle can be fulfilled in many different ways.  The important thing is 

that system goals are allowed to serve as a selective force.

 The final SMEPH dynamical principle pertains to a shorter time-scale than 

evolution, and states

Principle of Attention Allocation: In an intelligent system, Schema and Concepts that 

are more useful for attaining short-term goals will tend to consume more of the system’s 

energy.

 Derived hypergraphs may be constructed corresponding to any complex system 

which demonstrates a variety of internal dynamical patterns depending on its situation.  

However, if a system is not intelligent, the evolution of its derived hypergraph can’t be 

expected to follow the above principles.

 These  principles follow from the psynet model of mind, but they are more precise 

than the psynet model can be, because they assume a particular formalism for 

representing the contents of a mind (SMEPH hypergraphs).  Of course, no particular 



mind will be completely described by this sort of hypergraph model; the idea is that this 

level of approximate description is good enough for many purposes.

 The relationship between the human brain/mind and Novamente may be explored 

in a SMEPH context, by considering that both Novamente and the human mind can be 

modeled as SMEPH hypergraphs that obey the principles of implicit probabilistic 

inference and evolution.  Below we will use this approach to help organize our discussion 

of various concrete results from the cognitive sciences and their relevance for Novamente 

and AGI in general.

3.3.3 From SMEPH to Novamente

While SMEPH is a general approach to modeling any intelligent system, it is also 

possible to create intelligent systems bearing a special relationship to SMEPH.  

Novamente falls into this category, as did Webmind.  This special relationship makes it 

particularly easy to analyze these AI systems in SMEPH terms, but it also gives rise to 

potential confusions.

Novamente represents knowledge internally using a hypergraph data structure that 

involves nodes and links similar to SMEPH’s edges and vertices.  However, 

Novamente’s vocabulary of node and link types is richer than SMEPH’s, and the 

semantics of its nodes and links are different than that of SMEPH’s edges and vertices.  

For instance, Novamente has node types called ConceptNode and SchemaNode, but also 

others like PredicateNode and various types of PerceptNodes.  A Novamente 

ConceptNode will not generally represent a SMEPH Concept edge, because it’s rare that 

Novamente’s response to a situation will consist solely of activating a single 

ConceptNode.  Rather, the Concept edges in the derived hypergraph of a Novamente 

system will generally correspond to fuzzy sets of Novamente nodes and links.  

The term “map” is used in Novamente to refer to a fuzzy set of nodes and links 

that corresponds to a SMEPH concept or schema; and there is a typology of Novamente 

maps, to be briefly discussed below.  Often it happens that a particular Novamente node 

will serve as the “center” of a map, so that e.g. the Concept edge denoting “cat” will 

consist of a number of nodes and links roughly centered around a ConceptNode that is 

linked to the WordNode “cat.”  But this is not guaranteed – some Novamente maps are 

more diffuse than this with no particular center.

Somewhat similarly, the key SMEPH dynamics are represented explicitly in 

Novamente: probabilistic reasoning is carried out via explicit application of PTL on the 

Novamente hypergraph, evolutionary learning is carried out via application of the BOA 

optimization algorithm, and attention allocation is carried out via a combination of 

inference and evolutionary pattern mining.  But the SMEPH dynamics also occur 

implicitly in Novamente: emergent maps are reasoned on probabilistically as an indirect 

consequence of node-and-link level PTL activity; maps evolve as a consequence of the 

coordinated whole of Novamente dynamics; and attention shifts between maps according 

to complex emergent dynamics.



4 The Novamente AI Engine

The Novamente AI Engine is a unique, integrative AI architecture with general 

intelligence ambitions.  It is a particular implementation of the SMEPH approach to 

intelligence-modeling, developed in such a way as to provide a framework for artificial 

general intelligence and also for the construction of commercial narrow AI applications.   

Implemented for efficiency and scalability on a distributed computing framework, 

Novamente uses two main AI tools – Probabilistic Term Logic (PTL) and the Bayesian 

Optimization Algorithm (BOA) -- to generate numerous cognitive processes operating on 

an evolving probabilistic hypergraph stored across multiple functionally specialized 

lobes.   

The development of the Novamente system is not yet complete, and the 

functionality of Novamente as an AGI system remains unproven; however, the 

Novamente AI software framework has already proven itself in several practical 

applications.  There is a pragmatic, application-driven path from the current state of 

Novamente toward the medium- and long-term AGI goals of the system.  Table 1 gives a 

high-level portrayal of the project’s development over time, both historically and in terms 

of projected future milestones (the achievement of which depends, of course, on a variety 

of factors including project funding).

4.1 Practical Applications of the Novamente AI Engine

The Novamente design is embodied in a C++ implementation, which is under 

active development.  A number of performance issues, such as effectively swapping 

atoms between disk and memory, and distributed processing, have been dealt with via 

extensive optimization and testing. PTL and BOA have both been implemented and 

tested successfully; and much of the natural language framework has been completed.

 In parallel with the development of Novamente toward the goal general 

intelligence, the system has been utilized more narrowly as an “AI toolkit” in the 

construction of practical commercial software applications, for example:

Bioinformatics. The Biomind Analyzer, developed by Biomind LLC together with 

Novamente LLC, is an enterprise system for intelligent analysis of microarray gene 

expression data. BOA is used to uncover interesting patterns in labeled datasets, and also 

to learn classification models.   PTL is used for the integration of background information 

from a number of heterogeneous sources of biological knowledge, covering gene and 

protein function, research papers, gene sequence alignment, protein interactions, and 

pathways. This allows the Biomind Analyzer to augment the datasets it analyzes with 

background features corresponding to gene or protein categories, participation in 

pathways, etc. Inference is then used to create new relations between the genes and the 

functional categories provided by the background sources, effectively suggesting function 



assignments to genes with unknown roles.  For an example of work done using this 

process, see (Pennachin et al, 2005).



 

Milestone Date Description

M1 2001 Technical & Mathematical design + core implimentation 

M2 2002 General quantitative data analysis customization 

M2.1 2003 Gene expression microarray data analysis customization 

M3 2004 Natural language processing customization 

M3.1 2004 User interface for natural language entry customization 

M4 2004 Combinator-BOA algorithm for procedure/predicate learning 

M5 2004 Probabilistic inference module: First-order 

M6 2004 Probabilistic inference module: Higher-order 

M7 2004 Distributed architecture Version 1

M8 2005 Creation of AGI-SIM simulation world 

M9 2005 Completion of probabilistic attention allocation 

M10 2005 Agent control in AGI-SIM 

M11 2006 Distributed architecture Version 2

M12 2006 Self-modification architecture Version 1

Novamente Development Milestones

Milestone Date Description

M1 2006 Experiential grounding of simple language understanding 

M2 2006 Goal-directed navigation: the ability to find and retrieve objects 

M3 2007 Collaborative and creative play in Blocks World 

M4 2007 Ethical Behavior and Socialization

Novamente Teaching Milestones

Color Key: Completed | In Progress | Future

Table 1.  Novamente Development Milestones.  (Note:  customization in this table refers to narrow-AI 

work done largely outside of the scope of AGI, although most customizations improve the system, to 

varying degrees, for AGI.)



Human Language Processing and Knowledge Management. The INLINK interactive 

knowledge entry framework (Goertzel et al, 2005), developed by Object Sciences Corp. 

together with Novamente LLC, utilizes Novamente’s cognitive algorithms in 

combination with its NLP framework. Knowledge is entered via an interactive interface, 

which allows users to review and revise the system’s understanding of that knowledge. A 

knowledge base is thus produced, which is augmented by reasoning, and may be queried 

in English or a special formal language. BOA Pattern Mining is used to spontaneously 

create queries that are judged interesting.

4.2 Knowledge Representation

The SMEPH framework does not tell you how to build a mind, only, in general 

terms, what a mind should be like. It would be possible to create many different AI 

designs based loosely on the psynet model and the SMEPH approach; one example of 

this is the Webmind AI Engine developed in the late 1990’s (Goertzel et al. 2000, 

Goertzel 2002). Novamente, as a specific system inspired by these general ideas, owes 

many of its details to the limitations imposed by contemporary hardware performance 

and software design methodologies. Furthermore, Novamente is intended to utilize a 

minimal number of different knowledge representation structures and cognitive 

algorithms.

Knowledge representation in Novamente involves two levels, the explicit and the 

emergent: we will discuss both here, in sequence.  Explicit knowledge representation 

utilizes a hypergraph formalism inspired by the SMEPH approach, which somewhat 

resembles classic semantic networks but has dynamic aspects that are more similar to 

neural networks. This enables a breadth of cognitive dynamics, but in a way that utilizes 

drastically less memory and processing than a more low-level, neural network style 

approach. The details of the representation have been designed for compatibility with the 

system’s cognitive algorithms.  Tables 3 and 4 review the key node and link types used in 

Novamente.  Emergent knowledge representation, on the other hand, involves “maps” – 

fuzzy sets of nodes and links that respond to situations as habitual patterns, in the manner 

of SMEPH Concepts and Schema.

4.2.1 Explicit Knowledge Representation

 Novamente’s explicit knowledge hypergraph involves discrete units (called 

Atoms) of several types: Nodes, Links and Containers (the latter are ordered or unordered 

collections of atoms).  Each Atom is associated with a TruthValue, indicating, roughly, 

the degree to which it correctly describes the world. Novamente has been designed with 

several different types of truth values in mind; the simplest of these consists of a pair of 

values denoting probability and weight of evidence. All Atoms also have an associated 

AttentionValue indicating how much computational effort should be expended on them. 

These contain two values, specifying short and long term importance levels.



 Novamente node types include 

• ConceptNodes, which derive their meaning via interrelationships with other nodes

• PerceptNodes nodes representing perceptual inputs into the system (e.g., pixels, 

points in time, etc.)

• TimeNodes representing moments and intervals of time

• PredicateNodes representing complex patterns

• SchemaNodes embodying procedures 

 SchemaNodes and PredicateNodes are nodes containing procedures that output 

Atoms and truth values, respectively.  Procedures in Novamente are objects that produce 

an output, possibly based on a sequence of atoms as input. These objects contain 

structures called generalized combinator trees -- small computer programs written in 

sloppy combinatory logic, a language that we have developed specifically to meet the 

needs of tightly integrated inference and learning, utilizing ideas from combinatory logic 

as originally introduced in (Curry and Feys, 1958). 

 There are also special-purpose predicates that, instead of containing combinator 

trees, represent specific queries that report to the Novamente system some fact about its 

own state – these are called “feeling nodes”.  And finally, some predicates may also be 

designated as “goal nodes”, in which case the system’s GoalSatisfaction MindAgent 

allocates effort towards making them true.

 Finally, Links are Atoms that represent relationships between other Atoms, such 

as fuzzy set membership, probabilistic logical relationships, implication, hypotheticality, 

and context.  The complete list of (a few dozen) types and subtypes of links used, and the 

justifications for their inclusion, are omitted here for brevity.  However, the most 

essential links are the Inheritance link (representing probabilistic logical implication), the 

Similarity link (a symmetric version of Inheritance), and the ExecutionOutputLink 

(representing the application of a function to an argument).  

 The network of Inheritance links forms an approximate hierarchical network, and 

the network of Similarity links forms a heterarchical network – the overlap between them 

forms a dual network structure, which emerges as a consequence of PTL reasoning 

operations that build new links from old.  A dual network of maps forms implicitly from 

the dual network of nodes and links, thus forming the “emergent structure of mind” 

required according to the psynet model that is Novamente’s conceptual foundation.

The semantics of logical links in Novamente are probabilistic, similar to in 

SMEPH.  For example, we may write

InheritanceLink Iraq nation

meaning that there are ConceptNodes corresponding to the concepts “Iraq” and 

“nation,” and there is an InheritanceLink pointing from one to the other 

(signifying that Iraq is indeed a nation).  Or we may write

AssociativeLink Iraq terrorism <.7>

which just indicates a generic association between the two denoted ConceptNodes, with 

probabilistic strength .7.   An associative relationship is useful for the spreading of 



attention between related concepts, and also useful as a signpost telling the logical 

inference MindAgents where to look for possibly interesting relationships.  

 A more concrete relationship between Iraq and terrorism, such as “many terrorists 

live in Iraq,” might be represented as

ImplicationLink lives_in_Iraq is_terrorist <.01>

where lives_in_Iraq and is_terrorist are PredicateNodes, and the former predicate obeys a 

relationship that would be written

EquivalenceLink (lives_in_Iraq (X)) (lives_in (Iraq , X) )

using variables, or

EquivalenceLink lives_in_Iraq  (lives_in (Iraq) )

using a variable-free, combinatory-logic-based internal representation (Novamente 

supports either representational style).  

 These have been examples of declarative knowledge; procedural knowledge, on 

the other hand, is represented via SchemaNodes and PredicateNodes, which embody 

snippets of code carrying out small procedures.  The set of elementary schema/predicate 

functions is in effect an “internal Novamente programming language,” which bears some 

resemblance to functional programming languages like pure LISP or Haskell.   This 

language is represented externally as a language called Combo, which is difficult to write 

programs in due to the lack of local variables.  There is also software allowing a more 

usable language called Sasha, a variant of the functional language Speagram 

(www.speagram.org), to compile into Combo.

4.2.2 Implicit Knowledge Representation

 Much of the meaning of Novamente’s cognitive algorithms lies in the 

implications they have for dynamics on the map level.  Here the relation between 

Novamente Maps and the concepts of mathematical dynamical systems theory is highly 

pertinent.  

 Generally speaking there are two kinds of maps: map attractors, and map 

transients.  Schema and predicate maps generally give rise to map transients, whereas 

concepts and percepts generally give rise to map attractors; but this is not a hard and fast 

rule.  Other kinds of maps have more intrinsic dynamic variety, for instance there will be 

some feeling maps associated with transient dynamics, and others associated with 

attractor dynamics.

 Many concept maps will correspond to fixed point map attractors – meaning that 

they are sets of Atoms which, once they become important, will tend to stay important for 

a while due to mutual reinforcement.  However, some concept maps may correspond to 

more complex map dynamic patterns.  And event maps may sometimes manifest a 

dynamical pattern imitating the event they represent.   This kind of knowledge 

representation is well known in the attractor neural networks literature .

http://www.speagram.org


 Schemata, on the other hand, generally correspond to transient maps.  An 

individual SchemaNode does not necessarily represent an entire cognitive procedure of 

any significance – it may do so, especially in the case of a large encapsulated schema; but 

more often it will be part of a distributed schema.  A distributed schema is a kind of mind 

map, and its map dynamic pattern is simply the system behavior that ensues when it is 

executes – behavior   that may go beyond the actions explicitly embodied in the 

SchemaNodes contained in the distributed schema.  

 The maps in the system build up to form larger and more complex maps, 

ultimately yielding very large-scale emergent patterns, including patterns like the “dual 

network” (a combined hierarchical/heterarchical control structure) and the “self” (a 

fractal pattern in which a subnetwork of the hypergraph comes to resemble the 

hypergraph itself), which are posited in the psynet model of mind.

Figure 1.  High-level architecture of a complex Novamente instantiation.  Each component is a Lobe, 

which contains multiple atom types and mind agents.  Lobes may span multiple machines, and are 

controlled by schemata which may be adapted/replaced by new ones learned by Schema Learning, as 

decided by the Schema Learning Controller.  The diagram shows a configuration with a single interaction 

channel, that contains sensors, actuators and linguistic input; real deployments may contain multiple 

channels, with different properties.   (From Looks et al, 2004)

4.3 Architecture and Dynamics 

In Novamente we have reduced the set of fundamental cognitive algorithms to 

two: Probabilistic Term Logic (PTL) and the Bayesian Optimization Algorithm (BOA; 

see Pelikan, 2002). The former deals with the local creation of pieces of new knowledge 



from existing pieces of knowledge; the latter is more oriented towards global 

optimization, and creates new knowledge by integrating large amounts of existing 

knowledge. These two algorithms themselves interact in several ways, representing the 

necessary interdependence of local and holistic cognition.  

Architecturally, the Novamente system consists of a set of functionally 

specialized lobes, along the lines depicted in Figure 1 above.  Each lobe contains a 

hypergraph representing declarative, procedural and episodic knowledge, and also 

contains a number of objects called MindAgents.  Some of the MindAgents perform basic 

system maintanence operations (I/O, caching to disk, system statistics collection), but 

most of which contain cognitive algorithms applying PTL and BOA in conjunction with 

simple heuristics to carry out particular cognitive tasks like procedure learning, 

probabilistic inference on declarative knowledge, language parsing, and so forth.  Figure 

2 depicts the architecture of an individual Novamente lobe, and Figure 3 shows a 

collection of lobes networked together.

The “attention allocation” component of Novamente takes care of credit 

assignment, via using PTL and BOA to determine which Atoms and combinations of 

Atoms have been useful in which contexts in the past.  This information is used to adjust 

the importance parameters of each Atom, which in turn determines how much attention 

the system’s cognitive processes pay to each Atom.  This leads to the formation of what 

are called “maps” – collections of Atoms that are habitually activated together, either all 

at once or in a particular habitual sequence.  These maps can represent both declarative 

and procedural knowledge: they are an emergent level of knowledge representation, 

ensuing indirectly from Novamente’s explicit Atom-based knowledge representation and 

its attention allocation dynamics.  Table 5 reviews the basic types of Novamente maps.

Of course, the meaning of all these details lies in the integrated system behavior.  

Table 6 gives an indication of how Novamente, as a whole system, carries out various 

particular AI tasks differently than competing AI systems.  But the crux of the matter, of 

course, is whether Novamente can ultimately lead to the emergence of the phenomenal 

self and a sense of will and self-awareness, qualitatively similar to what exists in the 

human mind.  Unlike other AGI designs out there, it has been explicitly designed to do 

so.  But the proof or disproof will be in the pudding.  

The key question is whether Novamente, when placed in a simulated environment 

like AGI-SIM and interacted with by humans using linguistic and “physical” means, will 

develop a sophisticated and useful “self-map” – a map that models its own self in its 

interaction with the world and in its internal dynamics.  This self-map need not be 

entirely accurate – no human’s is – but it needs to be accurate enough to survive in the 

mind, and to be oriented toward particular tasks, thus creating a “focus of awareness” out 

of the “moving bubble of attention” supplied by Novamente’s attention-allocation 

component.



Novamente Design Aspect Primary Functions

Nodes

Nodes may symbolize entities in the 

external world, simple executable 

processes abstract concepts, or components 

in relationship-webs signifying complex 

concepts or procedures

Links

Links may be n-ary, and may link Nodes or 

other Links; they embody various types of 

relationships between concepts, percepts or 

actions.  The network of Links is a web of 

relationships.

MindAgents

A MindAgent is a software object 

embodying a dynamic process such as 

activation spreading or first-order logical 

inference.  It acts directly on individual 

Atoms, but is intended to induce and guide 

dynamic system-wide patterns.

Mind OS

The Mind OS builds on a distributed 

processing framework to enable distributed 

MindAgents to act efficiently on large 

populations of Nodes and Links

Maps

A Map represents declarative or procedural 

knowledge as a pattern of many Nodes and 

Links

Units

A Unit is a collection of Nodes, Links and 

MindAgents devoted to carrying out a 

particular function such as vision 

processing, language generation, or a 

specific information processing style such 

as highly-focused concentration

Table 2.  Major Aspects of the Novamente AGI Design

  



Figure 2.  Conceptual Architecture of the Novamente “Mind OS” Layer



Figure 3.  A Novamente Instance as a Distributed System



Node Variety Description

Perceptual Nodes These correspond to perceived 

items, like WordInstanceNode, 

CharacterInstanceNode, 

NumberInstanceNode, 

PixelInstanceNode

Procedure Nodes These contain small programs called 

“schema,”
4 

and are called 

SchemaNodes.  Action Nodes that 

carry out logical evaluations are 

called PredicateNodes.

ConceptNodes This is a “generic Node” used for 

two purposes.  An individual 

ConceptNode may represent a 

category of  Nodes.  Or, a Map of 

ConceptNodes may represent a 

concept. 

Psyche Nodes These are GoalNodes and 

FeelingNodes, which are special 

PredicateNodes that play a special 

role in overall system control, in 

terms of monitoring system health, 

and orienting overall system 

behavior.

Table 3.  Novamente Node Varieties

4 

Note that the use of the term “schema” inside Novamente derives directly from the use of this 

term in philosophy, e.g. the work of Immanuel Kant.  It is different from the use of the term in 

contemporary database theory.



Link Variety Description

Logical links These represent symmetric or 

asymmetric logical relationships , 

either among Nodes 

(InheritanceLink, SimilarityLink), 

or among links and PredicateNodes 

(e.g. ImplicationLink, 

EquivalenceLink)

MemberLink These denote fuzzy set membership  

Associative links These denote generic relatedness, 

including HebbianLink learned via 

Hebbian learning, and a simple 

AssociativeLink representing 

relationships derived from natural 

language or from databases.  

ExecutionOutputLink These indicate input-output 

relationships among SchemaNodes 

and PredicateNodes and their 

arguments

Action-Concept links Called ExecutionLinks and 

EvaluationLinks, these form a 

conceptual record of the actions 

taken by SchemaNodes or 

PredicateNodes

ListLink and concatListLink These represent internally-created 

or externally-observed lists, 

respectively

Table 4.  Novamente Link Varieties



Map Type Description

Concept map a map consisting primarily of 

conceptual Nodes

Percept map a map consisting primarily of 

perceptual Nodes, which arises 

habitually when the system is 

presented with environmental 

stimuli of a certain sort

Schema map a distributed schema

Predicate map a distributed predicate

Memory map a map consisting largely of Nodes 

denoting specific entities (hence 

related via MemberLinks and their 

kin to more abstract Nodes) and 

their relationships

Concept-percept map a map consisting primarily of 

perceptual and conceptual Nodes

Concept-schema map a map consisting primarily of 

conceptual Nodes and 

SchemaNodes

Percept-concept-schema map a map consisting substantially of 

perceptual, conceptual and 

SchemaNodes

Event map a map containing many links 

denoting temporal relationships

Feeling map a map containing FeelingNodes as a 

significant component

Goal map a map containing GoalNodes as a 

significant component

Table 5.  Example Novamente Map Types



MindAgent Function Development 

Status

First-Order Inference Acts on first-order logical links, producing new 

logical links from old using the formulas of 

Probabilistic Term Logic

Complete

LogicalLinkMining Creates logical links out of nonlogical links Complete

Evolutionary Predicate 

Learning

Creates PredicateNodes containing predicates that 

predict membership in ConceptNodes

Complete

Clustering Creates ConceptNodes representing clusters of 

existing ConceptNodes (thus enabling the cluster to 

be acted on, as a unified whole, by precise inference 

methods, as opposed to the less-accurate map-level 

dynamics)

Complete

Activation Spreading Spreads activation among Atoms in the manner of a 

neural network

Complete

Importance Updating Updates Atom “importance” variables and other 

related quantities

Implemented in 

prototype form

Concept Formation Creates speculative, potentially interesting new 

ConceptNodes

Implemented in 

prototype form

Evolutionary 

Optimization

A “service” MindAgent, used for schema and 

predicate learning, and overall optimization of 

system parameters

Complete

Hebbian Association 

Formation

Builds and modifies HebbianLinks between Atoms, 

based on a PTL-derived Hebbian reinforcement 

learning rule

Implemented in 

prototype form

Evolutionary Schema 

Learning

Creates SchemaNodes that fulfill criteria, e.g. that 

are expected to satisfy given GoalNodes

Partially 

implemented 

Higher-Order Inference Carries out inference operations on logical links that 

point to links and/or PredicateNodes

Partially 

implemented 

Logical Unification Searches for Atoms that mutually satisfy a pair of 

PredicateNodes

Not yet 

implemented

Predicate/Schema 

Formation

Creates speculative, potentially interesting new 

SchemaNodes

Not yet 

implemented

Schema Execution Enacts active SchemaNodes, allowing the system to 

carry out coordinated trains of action

Partially 

mplemented

Map Encapsulation Scans the AtomTable for patterns and creates new 

Atoms embodying these patterns

Not yet 

implemented

Map Expansion Takes schemata and predicates embodied in nodes, 

and expands them into multiple Nodes and links in 

the AtomTable (thus transforming complex Atoms 

into Maps of simple Atoms)

Not yet 

implemented

Homeostatic Parameter 

Adaptation

Applies evolutionary programming to adaptively 

tune the parameters of the system

Implemented in 

prototype form



Table 6.  Primary Novamente MindAgents



Cognitive 

Task

Standard 

Approaches

Challenges Novamente Approach

Logical 

Inference

Predicate, term, 

combinatory, fuzzy, 

probabilistic, 

nonmonotonic or 

paraconsistent logic

• Accurate management 

of uncertainty in a 

large-scale inference 

context

• “Inference control”: 

Intelligent, context-

appropriate guidance of 

sequences of inferences

• Probabilistic Term 

Logic tuned for 

effective large-scale 

uncertainty 

management

• Inference control 

carried out via a 

combination of 

inferential and 

noninferential 

cognitive processes

Attention 

Allocation

Blackboard systems, 

neural net activation 

spreading

The system must focus on user 

tasks when needed, but also 

possess the ability to 

spontaneously direct its own 

attention without being flighty or 

obsessive

Novamente’s nonlinear, 

probabilistic inference based 

Importance Updating Function 

combines quantities derived 

from neural-net-like activation 

spreading and blackboard-

system-like cognitive-utility 

analysis

Procedure 

Learning

Evolutionary 

programming, logic-

based planning, 

feedforward neural 

networks, 

reinforcement 

learning

Techniques tend to be 

unacceptably inefficient except 

in very narrow domains

A synthesis of techniques 

allows each procedure to be 

learned in the context of a 

large number of other already-

learned procedures, enhancing 

efficiency considerably

Pattern 

Mining

Apriori, genetic 

algorithms, logical 

inference, search 

algorithms

Finding complex patterns 

requires prohibitively inefficient 

searching through huge search 

spaces

Integrative cognition is 

designed to hone in on the 

specific subset of search space 

containing complex but 

compact and significant 

patterns

Human 

Language 

Processing

Numerous parsing 

algorithms and 

semantic mapping 

approaches: context-

free grammars, 

unification 

grammars, link 

grammars; 

conceptual graphs, 

conceptual 

grammars…

Integrating semantic and 

pragmatic understanding into the 

syntax-analysis and production 

process

• Syntactic parsing is 

carried out via logical 

unification, in a 

manner that 

automatically 

incorporates 

probabilistic semantic 

and pragmatic 

knowledge.

• Language generation 

is carried out in a 

similarly integrative 

way, via inferential 

generalization



Cognitive 

Task

Standard 

Approaches

Challenges Novamente Approach

Self-

Modeling 

(the creation 

of a 

“phenomenal 

self”)

No current AI system 

or AGI design 

addresses this

• Creating a 

representational system 

sufficiently 

sophisticated to 

represent something as 

complex as a self in a 

compact way

• Creating learning 

algorithms capable of 

the large-scale pattern-

recognition prowess 

required to recognize 

something as large and 

abstract as a self in the 

large body of relevant 

but noisy data available 

to an embodied 

intelligence

This is viewed as a pattern 

recognition and inference 

problem similar to many 

others confronted by 

Novamente, but larger in 

scale.  Novamente contains 

specific algorithms for mining 

patterns in its internal 

knowledge-hypergraph and 

explicitly embodying these 

patterns in new subgraphs.  

The self is one such pattern.

Table 7.   Comparison of Approaches to Several Cognitive Tasks 

4.4 Probabilistic Term Logic

In this section we will dig into one aspect of Novamente cognition in a moderate 

amount of detail: the Probabilistic Term Logic (PTL) inference module.  The choice to 

expound on PTL in detail here, instead of some other aspect of Novamente cognition, is 

somewhat arbitrary, and is definitely based on pragmatic considerations – not because 

PTL is the most important part.  Of the two key cognitive algorithms underlying 

Novamente, BOA is less original than PTL and is outlined in (Pelikan, 2002), although 

its application in a Novamente context involves many unique features (since in 

Novamente it acts on combinatory logic trees rather than Pelikan’s bit strings).  On the 

other hand Novamente’s approach to attention allocation can’t really be presented except 

in the context of PTL.

PTL is a highly flexible inference framework, applicable to many different 

situations, including inference involving uncertain, dynamic data and/or data of mixed 

type, and inference involving autonomous agents in complex environments. It was 

designed specifically for use in Novamente, yet also has applicability beyond the 

Novamente framework.  PTL has been applied in several areas:

• To draw inferences regarding the relationships between concepts observed in 

news articles and messages, and extracted via language processing software



• To make guesses as the functional categories to which various little-understood 

genes belong, based on integrating quantitative gene expression data with data 

from biological ontologies

• To integrate the results of predictive models learned by BOA, predicting the 

density of vehicles in various regions of a map as it changes over time

Current research involves using PTL to reason on the output of a sophisticated natural 

language parser.

The goals motivating the development of PTL were the desire to have a practical, 

scalable inference system that operates consistently with probability theory.  Although it 

uses probabilistic methods, PTL does not require a globally consistent probability model 

of the world, but is able to create locally consistent models of local contexts, and 

maintain a dynamically-almost-consistent overall world-model, dealing gracefully with 

inconsistencies as they occur.   It encompasses both abstract, precise mathematical 

reasoning and more speculative hypothetical, inductive, and/or analogical reasoning; and 

it encompasses the inference of both declarative and procedural knowledge.  It deals with 

inconsistent initial premises by dynamically iterating into a condition of "reasonable 

almost-consistency and reasonable compatibility with the premises", thus, for example, 

perceiving sensory reality in a way compatible with conceptual understanding, in the 

manner similar to that developed in the contemporary neural network literature, see e.g. 

(Haikonen 2003).  Finally, it has the property that it makes most humanly simple 

inferences appear brief, compact and simple. For a sustained argument that term logic 

exceeds predicate logic in this regard, see (Sommers et al, 2000).

On a technical level, one difference between PTL and standard probabilistic 

inference frameworks is that PTL deals with multivariable truth values. Its minimal truth 

value object has two components: strength and weight of evidence.   Another difference 

is PTL’s awareness of context.  Each PTL inference takes place in some context, which 

can be universal (everything the system has ever seen), local (only the information 

directly involved in a given inference), or many levels between. 

PTL is divided into two portions: first-order and higher-order.  First-order PTL 

deals with probabilistic inference on (asymmetric) inheritance and (symmetric) similarity 

relationships, where different Novamente link types are used to represent intensional 

versus extensional relationships (Wang, 1995).   Example inference rules are deduction 

(AàB, BàC |- Aà C), induction and abduction (shown in Figure 1), inversion (Bayes 

rule), similarity-to-inheritance-conversion, and revision (which merges different 

estimates of the truth value of the same atom).  



Figure 4.  First-Order PTL Inference on InheritanceLinks

Each inference rule comes with its own quantitative truth value formula, derived 

using probability theory and related considerations.   A simple quantitative example of 

first-order PTL deductive inference is:

InheritanceLink mud dangerous (.8,.7)

SimilarityLink sand mud (.6,.99)

|-

InheritanceLink sand dangerous (.31,.98)

The number-pairs such as (.8,.7) refer to the two components of a PTL truth value – the 

probability is .8, and the .7 represents the amount of evidence on which this probability 

estimate was based.  The detailed trail of PTL inference in this case is as follows.  First 

the similarity relation is converted to inheritance, yielding

InheritanceLink sand mud (0.38, 0.98)

Then the deduction 

InheritanceLink sand mud (0.38, 0.98)

InheritanceLink mud dangerous (.8,.7)

|-

InheritanceLink sand dangerous (0.31,0.98)



is performed.
5

   It’s worth noting that the truth values in PTL combine both intensional 

and extensional information: the inheritance between mud and dangerous may be 

extensional, in the sense of deriving from actual observed instances of mud being 

dangerous; whereas the similarity between sand and mud is intensional, because it 

doesn’t derive from there being a lot of instances that are both sand and mud, but rather 

from there being a lot of properties shared by sand and mud.

Higher-order PTL deals with inference on links that point to links rather than 

nodes, and on predicates and schemata.  The truth value functions here are the same as in 

first-order PTL, but the interpretations of the functions are different.  This aspect of PTL 

allows inference on complex patterns and procedures – an area in which alternate 

approaches to uncertain inference are extremely weak.  We will review some examples of 

higher-order PTL below.

In sum, the PTL inference framework is a sophisticated, well-tuned approach to 

carrying out large-scale probabilistic inference in a real-world context.  It has already 

been used for handling both quantitative, linguistic and mathematical inference, and is 

well suited to serve as a bridge between quantitative sensorial information and symbolic 

knowledge.

4.4.1 Intensional and Extensional Logical Relationships

One of the key concepts in PTL is the distinction between intensional and 

extensional logical relationships.  The Subset relationship is what we call an extensional 

relationship – it relates two sets according to their members.  The strength of the 

SubsetLink between A and B denotes the percentage of A’s that are also B’s.  PTL 

handles Subset relationships but also deals with intensional relationships – relationships 

that relate sets according to the patterns that are associated with them.  

Conceptually, the intension/extension distinction is very similar to that between a 

word's denotation and connotation.  For instance, consider the concept “bachelor.”  The 

extension of “bachelor” is typically taken to be all and only the bachelors in the world (a 

very large set).  In practical terms, it means all bachelors that are known to a given 

reasoning system, or specifically hypothesized by that system.  On the other hand, the 

intension of “bachelor” is the set of properties of “bachelor,” including principally the 

property of being a man, and the property of being unmarried.  

Some theorists would have it that the intension of “bachelor” consists solely of 

these two properties, which are “necessary and sufficient conditions” for bachelorhood; 

PTL’s notion of intension is more flexible, it may include necessary and sufficient 

conditions but also other properties, such as the fact that most bachelors have legs, that 

they frequently eat in restaurants, etc.   These other properties allow us to understand how 

the concept of “bachelor” might be stretched in some contexts – for instance, if one read 

the sentence “Jane Smith was a more of a bachelor than any of the men in her apartment 

building,” one could make a lot more sense of it using the concept “bachelor”’s full PTL 

5 PTL requires “node probabilities” for this inference, which are defined relative to a relevant context.   The example uses the values mud: 

0.001, sand: 0.05, dangerous: 0.015.



intension, than one could make using only the necessary-and-sufficient-condition 

intension.

To understand the relation between intensional and extensional inheritance 

(Subset) in practice, consider the example of fish and whales.  Extensionally whales are 

not fish, i.e.

Subset whale fish <.0001>

But intensionally, the two share a lot of properties, so we may say perhaps

IntensionalInheritance whale fish <.7>

The essential idea underlying PTL’s treatment of intension is to associate both 

fish and whale with sets of patterns – fish
PAT 

and whale
PAT

, the sets of patterns associated 

with fish and whales.  We then interpret

IntensionalInheritance whale fish <.7>

as

Subset whale
PAT 

fish
PAT 

And we then define Inheritance proper as the disjunction of intensional and extensional 

(subset) inheritance, i.e.

Inheritance A B

is defined as

OR

 Subset A B

 IntensionalInheritance A B

Why do we think intensional relationships are worth introducing into PTL?  This 

is a cognitive science rather than mathematical question.  We hypothesize that most 

human inference is done not using subset relationships, but rather using composite 

Inheritance relationships.  And, consistent with this claim, we suggest that, in most cases, 

the natural language relation “is a” should be interpreted as an Inheritance relation 

between individuals and sets of individuals, or between sets of individuals – not as a 

Subset relationship.  For instance, 

“Fluffy is a cat”

as conventionally interpreted is a combination extensional/intensional statement, as is

“Cats are animals.”



This statement means not only that examples of cats are examples of animals, but also 

that patterns in cats tend to be patterns in animals.

Philosophically, one may ask why a pattern-based approach to intensional 

inference makes sense.  Why isn’t straightforward probability theory enough?  The 

problem is – to wax poetic for a moment -- that the world we live in is a special place, 

and accurately reasoning about it requires making special assumptions that are very 

difficult and computationally expensive to explicitly encode into probability theory.  One 

special aspect of our world is what Charles Peirce referred to as “the tendency to take 

habits”: the fact that “patterns tend to spread,” i.e. if two things are somehow related to 

each other, the odds are that there are a bunch of other patterns relating the two things.   

To encode this tendency observed by Peirce in probabilistic reasoning one must calculate 

P(A|B) in each case based on looking at the number of other conditional probabilities that 

are related to it via various patterns.  But this is exactly what intensional inference, as 

defined in PTL, does.  This philosophical explanation may seem somewhat abstruse – 

until one realizes how closely it ties in with human commonsense inference, and with the 

notion of inheritance as utilized in natural language.  

4.4.2 Analogical Reasoning in PTL

As an illustration of how PTL works in practice, we’ll now consider a simple 

example of analogical inference.   Imagine Novamente is playing detective, and is 

hunting for an individual names Smith.   Consider the following min-scenario: 

“Novamente knows what kind of car Smith has, and asks other agents in the area if 

they’ve seen a similar car.  They say they have seen it parked in a certain particular 

garage.  The agent checks out that garage, but Smith’s car isn’t there.  So it decides to 

check out nearby garages.”

We now explain in detail how PTL reasons that, because people often hide in 

houses nearby their houses, perhaps cars are often hidden in garages nearby the garages 

they usually are parked in. 

First we introduce some notation, informally.  One piece of knowledge it needs to 

carry out this inference is that 

person hide_in $X implies $X is house (.2,.9)

This is a PTL probabilistic implication relationship.  In the notation used standardly to 

describe Novamente nodes and links, this implication would be written as:

ImplicationLink (.2,.9)

 EvaluationLink hide_in 

ListLink (person, $X)

InheritanceLink $X house 

Here person and house are ConceptNodes and hide_in is a PredicateNode.  Note that 

these ConceptNodes and PredicateNodes are merely tokens signifying the network of 

nodes and links within Novamente that embody the concepts of hiding, people, and so 



forth.  The overall network of nodes and links signifying hiding may be quite large and 

complex, embodying a knowledge of many properties and instances of hiding, but 

nevertheless there may also be a single ConceptNode linked to the PhraseNode hide_in, 

which has the property that it’s activated if and only if the overall “map” of nodes and 

links signifying hiding-in is activated.

The system may also know that people tend to hide in houses near the ones they live in 

(an implication learned by the Novamente predicate mining heuristic)

AND ($X is person, $Y is house, $Z is house, $X live_in $Y, $X hide_in $Z) 

implies $Y is_near $Z (.4,.7)

And it may also know

house is building <.9,.99>

from which it can reason (via PTL deduction)

AND($X is person, $Y is building, $Z is building, $X live_in $Y, $X hide_in $Z) 

implies $Y is_near $Z (.11,.87)

Now if it knows that people are similar to cars in some regards, i.e.

person is like car (.2,.99)

(a SimilarityLink relationship) then it can conclude that 

AND($X is car,$Y is building, $Z is building, $X live_in $Y, $X hide_in $Z) 

implies $Y is_near $Z (.05, .23)

If it knows that

garage is building (.99,.99)

car regularly_park_in garage (.9,.9)

regularly_park_in is like live_in (.4,.8)

it can conclude that
6

AND($X is car,$Y is garage, $Z is garage, $X regularly_park_in $Y, $X hide_in $Z) 

implies $Y is_near $Z (0.032, .23)

In cognitive science terms, this general conclusion was arrived at via analogy to the 

original observation about people hiding in houses.  In PTL terms, the single “analogy” 

step is decomposed into a number of probabilistic inference steps.  Note that the 

conclusion is less certain than the premise, because a number of somewhat shaky 

assumptions were used along the way (for instance, the similarity between people and 

cars, the similarity between parking and living).

6 In carrying out these inference we have assumed the following contextually appropriate node probabilities: person: .05, vehicle: .03, house: 

.02, building: .035, garage: .045, regularly_park_in 0.06, live_in 0.055



So, suppose there is a particular car that our autonomous cars is looking for, and this car 

has been seen parking in a certain garage several times.  Then it may wish to make use of 

a rearrangement of the above, namely

AND($X is car,$Y is garage,$Z is garage,

$X regularly_park_in $Y,$Y is_near $Z)

implies $X hide_in $Z (s,N)

In order to derive the truth value of this, PTL needs to have an estimate of how many 

garages are near the garage the car regularly parks in.  This of course will depend upon 

the particular garage in question.  In a crowded part of the city, this number may be 

sufficiently large that the truth value strength s of the above statement is very low, so the 

car decides it’s not worth searching through the nearby garages due to lack of time.  On 

the other hand, if there aren’t many garages around, then s will be reasonably large for 

any particular garage, so that spending a limited time searching in nearby garages is 

worthwhile.

5 Novamente vs. the Human Brain/Mind: Memory, 

Learning and Perception

 Now, having explained a bit about Novamente and its conceptual underpinnings, 

we will review some specific relationships between the lessons of modern cognitive 

science, the SMEPH approach to mathematical mind-modeling, and the Novamente AI 

design.  

Table 8 gives some rough intuitive correspondences between Novamente 

structures and human brain structures.  This table should be taken with several grains of 

salt – clearly, the brain is not sufficiently well understood for a table like this to be made 

with a high degree of confidence.  But we have our own intuitions based on the current 

state of knowledge, and we feel these are worth sharing.

Table 8 notwithstanding, we will mostly deal here with cognitive science proper 

rather than cognitive neuroscience, and introduce neuroscience ideas in cognitive context.  

As noted above, due to the incompleteness of our knowledge of the human brain, 

knowledge from brain science is really only useful for AGI design when it is coupled 

with knowledge from cognitive science.  For instance, if it weren’t evident 

psychologically that visual percepts are perceived, remembered and reasoned on as 

wholes, then the fact that a single visual percept typically activates widely distributed 

neurons might seem to have a quite different significance than the currently accepted one.  

Because of this cognitive fact we have the binding problem, and we have the interesting 

neurocognitive hypothesis that percepts are represented as attractors – a hypothesis with 

powerful AGI implications.  But this AGI hypothesis would never have come out of the 

neuroscience in itself, it had to come from a neuro/cognitive understanding.  

On the other hand, cognitive science results can be quite helpful for AGI in 

themselves, quite apart from whether they are backed up by any neuroscience knowledge.  



An example is the cognitive science of abstract reasoning.  Of course, though, cognitive 

science results are most interesting when backed up by brain science as well; and we will 

draw our greatest inspiration from those cases where the two disciplines coincide.



Human Brain 

Structure/Phenomenon

Primary Functions Novamente 

Structure/Phenomena

Neurons Impulse-conducting cells, whose 

electrical activity is a key part of 

brain activity

No direct correlate: Novamente’s 

implementation level is different

Neuronal groups Collections of tightly 

interconnected neurons, often 

numbering 10,000-50,000

Novamente nodes

Synapses The junction across which a 

nerve impulse passes from one 

neuron to another; may be 

excitatory or inhibitory

Novamente links are like bundles 

of synapses joining neuronal 

groups

Synaptic Modification Chemical dynamics that adapt 

the conductance of synapses 

based on experience; thought to 

be the basis of learning

The HebbianLearning MindAgent 

is a direct correlate.  Other 

cognitive MindAgents (e.g. 

inference) may correspond to 

high-level patterns of synaptic 

modification

Dendritic Growth Adaptive growth of new 

connections between neurons in 

a mature brain

Analogous to some heuristics in 

the ConceptFormation MindAgent

Neural attractors Collections of neurons and/or 

neuronal groups that tend to be 

simultaneously active

Maps, e.g. concept and percept 

maps

Neural input/output maps Composites of neuronal groups, 

mapping percepts into actions in 

a context-appropriate way

Schema maps

“Neural Darwinist” map evolution Creates new, context-

appropriate maps

Schema learning via 

reinforcement learning, inference, 

evolution

Cerebrum Perception, cognition, emotion The majority of Units in a 

Novamente configuration

Specialized cerebral regions 

(Broca’s area, temporal lobe, visual 

cortex,…)

Diverse functions such as 

language processing, visual 

processing, temporal information 

processing,…

Functionally-specialized 

Novamente Units

Cerebellum Movement control, information 

integration

Action-oriented units, full of action 

schema-maps

Midbrain Relays and translates 

information from all of the 

senses, except smell, to higher 

levels in the brain

Schemata mapping perceptual 

Atoms into cognitive Atoms

Hypothalamus (regulation of basic biological 

drives and controls autonormic 

functions such as hunger, thirst, 

and body temperature)

HomeostaticParameterAdaptation

MindAgent, built-in GoalNodes

Limbic System (control emotion, motivation, and 

memory)

FeelingNodes and GoalNodes, 

and associated maps

Table 8.  Novamente vs. the Human Brain

Another preliminary note to be made is that the SMEPH approach doesn’t 

necessarily break the mind down into components in the same ways as the mainstream of 



modern cognitive science.  For instance, memory and reasoning are typically considered 

as separate things, in the course of cognitive science research.  Yet, in the SMEPH 

approach, it is considered that most acts of “memory retrieval” are actually coordinated 

acts of reasoning, “constructing” memories from stored knowledge.  Similarly, reasoning 

and perceptual pattern recognition are typically considered as different things, yet in the 

SMEPH approach, perceptual pattern recognition is done via the same probabilistic 

equations used for abstract reasoning, deployed in simpler and more scalable ways.  

These differences don’t make it impossible to draw mappings between 

Novamente and the human mind/brain, but they do mean that these mappings must be 

drawn with care.  In every case we’ve explored so far, when one probes deeply, one finds 

that the SMEPH/Novamente approach is harmonious with the ideas of some significant 

subset of cognitive science researchers.  For instance (Riegler, 2005) advocates the 

constructive nature of memory, whereas (Goldstone et al, 2005) discusses parallels 

between perceptual learning and abstract cognition; etc.  In many cases cognitive science 

divides mental process into categories based on convention and convenience; and when 

building an AGI one is confronted with a different notion of convenience – a division 

(like memory vs. reasoning) that’s convenient for guiding the design of experiments on 

human subjects can be extremely inconvenient from the perspective of AGI design.  In 

this regard Novamente is perhaps closer to neuroscience than cognitive science – 

neuroscientists are continually discovering feedback loops and dynamical and structural 

complexities that break through the simplistic divisions favored by many cognitive 

theorists.  This is because neuroscientists, like AGI designers and engineers, are dealing 

with the necessary messiness of real complex systems, rather than with simplified 

theoretical abstractions.

5.1 Novamente’s Memory vs. Human Memory

One area where Novamente clearly accords with cognitive science ideas is the 

division of memory into various subcomponents.  The distinction between procedural, 

episodic and declarative memory is well-demonstrated both psychologically and 

neuroscientifically (Baddeley, 1999), and it is also quite natural in terms of Novamente’s 

hypergraph knowledge representation.  In fact the distinction between procedural and 

declarative knowledge already exists at the SMEPH level of abstraction, in the form of 

the distinction between Concept edges and Schema edges.

Declarative knowledge is naturally represented in Novamente via probabilistic-

logical link types, whereas procedural knowledge is naturally represented using links 

explicitly representing actions taken.   Episodic memory, finally, is naturally represented 

via links joining probabilistic-logical relationships defining sequences of events with 

records stored in an “experience database.”  The distinction between the three memory 

types becomes, in Novamente terms, a matter of representational efficiency.  

Experiential episodes can be stored in declarative logical terms but this is 

extremely inefficient; so for practical purposes it’s better to store experiences in another, 

less flexible form, and map only their high-level structure in declarative form.  As the 

mind and its goals change, the experience database will be repeatedly revisited and its 



contents re-represented declaratively in different ways based on different acts of pattern 

recognition.   

On the other hand, procedural knowledge can also be stored in declarative form, 

and this is useful when one wants to reason about procedures.  But it is generally the case 

that the most natural form of a procedure from the point of view of reasoning about the 

procedure is not the most efficient form from the point of view of actually executing the 

procedure.  So for practical reasons one winds up with dual representations of 

procedures: an executable form that is compacted for execution efficiency, and an 

expanded form that’s suitable for generalization and inference.  A difference between 

AGI systems and the human brain comes up here: for humans it can be extremely 

difficult to create declarative forms for procedural knowledge.  On the other hand, detail-

level introspection is much easier for a software program than for a human brain, and 

procedural-to-declarative conversion doesn’t need to be so problematic.  This is one 

among many areas in which a slavish adherence to human neuropsychology is probably 

not clever AGI-design-wise.

Similarly, the distinction between short-term and long-term memory, fundamental 

to human psychology and well validated via neuroscience also turns out to be 

fundamental to AGI design, again for a combination of efficiency reasons and general 

SMEPH reasons.  The “short-term memory” concept has undergone a number of name 

changes as cognitive theory has developed, but the basic idea is simple and solid.  In a 

situation of limited processing power, not everything can be attended at once.  The 

Novamente approach involves the assignment of “importance” parameters to nodes and 

links, and the use of inference and pattern recognition to update these importance values 

dynamically.  Depending on the parameter values of the process, this dynamic updating 

will frequently lead to a situation in which a small percentage of nodes and links garner a 

vast majority of attention.  

This overall process exists in SMEPH generally, not just in Novamente.  In a 

SMEPH hypergraph, the edges and vertices that have been most useful will get more 

attention, but due to the nature of cognitive dynamics, there will often be groups of edges 

and vertices that, in a specific context, are particularly useful together as a unit.  

In the Novamente design this dynamic phenomenon (the emergence of STM) is 

structurally reified via the use of a separate lobe (the AttentionalFocus) for the most 

important nodes and links.  This seems qualitatively similar to how, in the human brain, 

the focus of attention is structurally reified via separate brain structures devoted to STM 

in its various forms.  

The refinements of the notion of STM that have occurred over the last few 

decades are also well reflected in the Novamente/SMEPH approach.  One recent 

discovery is that, prior to the registration of sensations in the STM, there is a preliminary 

process in which fleeting connections are drawn between sensations and knowledge 

stored in LTM.  This emerges naturally from the framework in which there is one overall 

knowledge-network and the “STM” is simply the “moving activation bubble” of most-

important-entities.   

Another discovery that has become gradually solidified since Baddeley (1989) 

first systematically presented it is the existence of multiple modality-specific STM’s, 

such as a visual-perception STM, a linguistic STM, and a generic “mental workspace.”  



This emerges naturally in the SMEPH approach, because the specialized schemata that 

handle a process like visual perception or language processing will naturally gather 

separate bubbles of highly-active nodes and links around them.  Again this dynamic 

process is reified in the Novamente architecture via the creation of specific lobes for 

modality-specific AttentionalFocus.

In cognitive science terms, SMEPH leads to a flexible model of attention, as opposed to 

the more rigid filtering or late-selection based approaches that were popular among 

theorists in the past (Underwood, 1993).  For instance, in the case where information 

comes in from two sensory channels and there are not enough resources to process both 

information-streams simultaneously, one achieves the result that: the earlier the stage at 

which selection between channels is possible (i.e. the closer the attentional focus is to the 

sensory level), the faster and more efficient the response to the attended channel, and the 

less is processed in the unattended channel.  This accords with results from human 

psychology;  for instance research on the timing of accessing word meanings (Luck, 

Vogel and Shapiro, 1996).   

 The “binding problem” that is so critical in modern cognitive science is less 

critical in the SMEPH domain.  Thinking about binding in the context of AGI impels one 

to decompose the problem into two parts: a conceptual part and a physiological part.  

Conceptually, there is a question of the logic and the cognitive dynamics by which 

disparate percepts are bound into a unified whole.  Then, physiologically, there is the 

question of how the brain executes this logic and dynamics, which is a subtle issue 

because the parts of the brain representing different parts of a unified percept are often 

physically widely distributed.  AGI systems give rise to the conceptual problem but not 

the physiological one.  The solution to the conceptual problem seems straightforward in 

the SMEPH context; it follows very closely Walter Freeman’s (2001) ideas regarding the 

emergence of attractors in the brain.  The linkages between sensation and LTM cause the 

relationships between the nodes and links involved in percepts corresponding to parts of 

a unified object to become important, which encourages the formation of predicates and 

concepts binding all of them together.  From this perspective, the physiological “binding 

problem” then comes down to how the formation of dynamic associational and logical 

linkages occurs between percepts and concepts represented in distant brain regions – a 

very important question for neuroscience, but not directly relevant to AGI systems, 

except those that seek to emulate the way the brain uses three-dimensional geometry to 

help represent knowledge and guide cognitive and perceptual dynamics.

 The nature of forgetting in human memory seems to an extent to represent general 

principles that are also applicable to SMEPH based systems.  It has recently become clear 

that a substantial amount of the forgetting that occurs in the human mind can be 

attributed to memory interference rather than simply “running out of space” (Wixted, 

2004).   This sort of phenomenon occurs naturally as a consequence of importance 

dynamics: if two pieces of knowledge contradict each other then when one gets attention 

the other will tend not to, and the loser in the rivalry will gradually get its importance 

downgraded until it’s forgotten.  In this view, running out of space is the ultimate reason 

for forgetting, but interference can explicitly cause memory items to be deprioritized.  

Also, the known fact that humans rarely truly forget anything that’s been fully learned 

(Baddeley, 1989) is reflected in the notion of long-term importance.  In Novamente, 



when an item is important on enough occasions, it achieves a high long-term importance, 

which basically guarantees that it will be preserved in the deep memory store (i.e. saved 

to disk) rather than being permanently forgotten.

 Finally, regarding the particular structure of the contents of memory, cognitive 

science doesn’t have anything definitive to say at the moment.  The SMEPH model is 

reminiscent of semantic-network-based models of human memory, which originated with 

Quillian  and have played a major role in many subsequent cognitive modeling 

approaches such as Anderson’s work on ACT-R (1997).   However, the nonlinear self-

organizing dynamics in SMEPH is also reminiscent of Walter Freeman style theories in 

which knowledge is represented in dynamical attractors.  At the moment semantic-

network-style models seem best able to deal with the human mind’s treatment of abstract, 

linguistic or mathematical declarative knowledge, whereas attractor-style models seem 

better able to deal with knowledge directly related to perception and action, and also to 

issues such as binding and the creation of unified percepts and unified phenomenal selves 

from conceptually and physically disparate components.  The SMEPH approach unifies 

these two approaches by proposing a framework in which the importance levels of nodes 

and links in a semantic network display complex dynamics with attractors, and specific 

semantic network nodes in many cases “key” specific attractors.

5.2 Learning in Humans and in Novamente

 “Learning theory,” in psychology, began in earnest with behaviorist studies of 

rote learning by pigeons, dogs and other animals.  Commonalities between learning 

behavior in humans and these other animals were correctly observed, and some basic 

principles of learning were enounced: contiguity (spatiotemporally nearby things are 

associated), frequency (conditional probabilities are tabulated), contingency and blocking 

(e.g. after it’s learned that a light predicts a shock, if a tone is introduced every time the 

light occurs, there is inhibition against learning that the tone predicts a shock).  This kind 

of behaviorist learning has been shown to roughly obey probabilistic principles; e.g. the 

foraging behavior of wild birds automatically adapts itself to constitute a near-optimal 

solution to the relevant multi-armed bandit problem (Alexander, 1996).

Neurally, behaviorist-style learning ties in naturally with Hebbian learning – an 

old hypothesis which is increasingly substantiated by neurological research.  We now 

know a fair bit about the chemical, genomic and proteomic dynamics underlying the 

processes of neuronal long-term potentiation that implement approximations of Hebb’s 

basic learning rule (to increase the conductance of synapses that are repeatedly used).

However, the connection between neuron-level Hebbian learning and organism-

level behavior learning is not quite so direct as many naively believed in the past.  To 

achieve animal-level behaviorist learning via a Hebbian simulated neural network can 

require quite complex dynamics in a neural net of substantial size; see e.g.  (Wilson, 

2000) which uses a sophisticated Hebbian-style neural network model, implemented in 

terms of continuous-valued neurons and differential equations, to simulate behavior 

learning in Siamese fighting fish.  This sort of work also indicates the amount of subtle 

tuning of Hebbian learning that is necessary to get it to give meaningful and useful 

results.  It is interesting to contrast Wilson’s work with the refinements of the Hebbian 



approach presented in Sutton and Barto’s (1998) classic text on reinforcement learning.  

The former refines the basic Hebbian idea based on biological plausibility and quality of 

simulating biological learning behavior; the latter based on mathematical elegance and 

learning performance on computer science test problems.  The clear message is that there 

are a lot of ways to tweak this basic learning mechanism, and the best way to tweak it for 

a given purpose is not at all obvious.   In particular, we have little idea at present how 

Hebbian learning would be modified and adjusted to give rise to the type of intermediate-

level learning we see in the human brain.

Clearly there is something powerful and valuable in the idea of Hebbian learning 

–something AGI designers should not ignore.  However, from an AGI point of view, one 

is led to wonder whether it is sensible to implement Hebbian learning directly, or to try to 

figure out what higher-level learning dynamics neural Hebbian learning is giving rise to, 

and emulate these in software.   In this regard the close connections between Hebbian 

learning and probability theory (Sutton and Barto, 1997) are highly interesting.  

In (Goertzel, 2003), it is argued that Hebbian learning on the neuron level naturally 

gives rise to probabilistic reasoning on the level of neuronal clusters or sets of neuronal 

clusters.   This suggests that if one hypothetically associates nodes in a semantic 

hypergraph with neuronal clusters or sets thereof, one can associate neural Hebbian 

learning with probabilistic inference on the probabilistic link weights in the hypergraph.  

I.e., it suggests that perhaps the reason Hebbian learning works so well in the brain is that 

it gives rise to approximate probabilistic inference on the level of the semantic 

hypergraph emergent from the brain.  Of course, this is a speculative theory – cognitive 

neuroscience hasn’t yet informed us how semantic-hypergraph-nodes are grounded in the 

brain, so we can’t even ask detailed questions about how various sorts of inferences about 

their interrelationships are neurally grounded.  But it is a speculation that accords with all 

available evidence, and is intuitively harmonious with existing knowledge in 

neuroscience, cognitive science and AI.

Hebbian learning is, on the face of it, a highly “local” learning method: it works by 

making incremental modifications to existing neurally based knowledge.  In computer 

science local learning methods are valuable, but there’s also a place for more global 

methods, which make big leaps to find answers far removed from existing knowledge.  

One of the most powerful global learning methods available is evolutionary learning, 

which takes many guises including genetic algorithms (Holland, 1992) and genetic 

programming (Koza, 1992), and roughly emulates the process of evolution by natural 

selection.  It is known that the immune system adapts to new threats via a form of 

evolutionary learning, and Edelman (1987) has proposed that the brain does as well, 

evolving new “neuronal maps” – patterns of neural connection and activity spanning 

numerous neuronal clusters – that are highly “fit” in the sense of contributing usefully to 

system goals.  He and his colleagues have run computer simulations showing that 

Hebbian-like neuronal dynamics, if properly tuned, can give rise to evolution-like 

dynamics on the neuronal map level (“neuronal group selection”).  This is very 

interesting, and is something that could potentially be implemented in a SMEPH context 

as well, where one could see emergent evolutionary learning arise from link-level 

probabilistic inference.  



Novamente involves this sort of “emergent evolutionary map-level dynamics” 

phenomenon but, in a significant design decision, it also involves explicit evolutionary 

programming using BOA (Pelikan, 2002), an algorithm related to but more efficient than 

genetic programming.  Like the creation of specific lobes for attentional focus and 

sensory modality focus, this is a case of explicitly choosing architectural features to 

match harmoniously with emergent phenomena.

So, Novamente’s two key learning algorithms – probabilistic inference via PTL and 

evolutionary learning via BOA – may be seen to correspond to two key aspects of 

learning in the brain: Hebbian learning and neuronal group selection.  And as with their 

neural correlates, these two learning algorithms fit naturally together – but for moderately 

different reasons.  BOA and PTL fit together via their mutual reliance on probability 

theory, whereas Hebbian learning and neuronal group selection fit together because of 

their common reliance on the physiology and electrochemistry of neurons and other brain 

cells.

5.3 Reasoning in Humans and Novamente

Logical reasoning is often taken as the most uniquely human cognitive 

characteristic.  Language is the most unique human faculty in everyday terms, but logic is 

in a sense the apex of human achievement.  It’s logical reasoning that’s led us to modern 

civilization – to such things as mathematics, science, and the institutions of democratic 

governance.    Furthermore, inference is closely related to the issue of consciousness and 

awareness, since in humans conscious supervision and control of thought seems to be 

necessary for confronting a new problem with logical inference tools.  

Logical reasoning is also something that is fairly close in some ways to the 

internal operations of computers, so it’s not surprising that a lot of AI research has 

focused on the area of reasoning.  However, automated reasoning systems have 

performed very poorly to date, unable to carry out either 

• everyday commonsense reasoning in the manner of a small child (though this was 

the goal of Cyc from the start, after a couple decades Cyc is still nowhere near 

achieving this goal)

• mathematical theorem-proving without detailed human guidance, beyond the 

level of simple theorems in set theory (Robinson and Voronkov, 2001)

The reason for this poor performance is moderately subtle.  It’s not that the AI 

programs are using bad reasoning rules.  Their reasoning rules are correct, in fact more so 

than the reasoning rules implicitly used by humans in many cases.  Humans are prone to 

stupid reasoning errors (Pietelli-Palmarini, 1996), and this often harms us in practical 

situations.  Rather, the problem is that AI systems are applying the reasoning rules to the 

wrong sorts of entities, and they don’t understand in what order to apply their reasoning 

rules – how to design a contextually-appropriate inference trajectory.

Regarding the “wrong sorts of entities” problem, there is a large literature on the 

nature of human concepts.  This pertains to the intension/extension distinction discussed 



above in a PTL context.  The classical school of thought held that concepts were defined 

by necessary and sufficient condition , but this has largely given way to a theory holding 

that concepts are defined mainly by prototypes and exemplars (Hunt and Ellis, 1999).   

Novamente and SMEPH suggest that both of these theories have some truth to them – 

that both necessary/sufficient conditions and prototypes/exemplars may be considered as 

probabilistic relationships in a concept hypergraph.  Novamente theory also suggests a 

third aspect to the definition of concepts, which may be important for human as well as 

AI cognition: pattern-based intensional definition, wherein a concept is defined partly by 

the set of patterns associated with it.

Humans seem to have good heuristics for figuring out which concepts to use to 

describe a given situation.  For instance, when perceiving a watch, a human must decide 

whether to think about it as a “watch”, an “object”, a   "self-winding ladies' analog 

wristwatch", etc.  The choice depends on context – i.e., it depends on which classification 

is going to be most useful for the inferences one wants to draw.   One heuristic humans 

often use is that objects that are atypical of basic level objects tend to be named and 

identified at a subordinate level (Jolicoeur, Gluck and Kosslyn, 1984).  In general, this 

“most useful level of categorization” problem is a subcase of the overall inference control 

problem – the problem of knowing which inference steps to carry out in which order.  

The SMEPH/Novamente approach to this issue is conceptually simple: inference 

control strategies are represented as schema, and may be learned just like any other kind 

of procedural knowledge.  The trick is that this is a very difficult learning problem.   And 

this is where experiential learning comes in: humans learn to reason by starting out in 

very simple situations (cf. Piaget et al, 2001), and once their inference control strategies 

are thus honed, they are ready to deal with slightly more complex situations, etc.  It may 

be that in order to learn to reason effectively, an AI must go through the same sort of 

series of steps.  Current Novamente applications have sidestepped this problem by using 

narrow-AI-style, hand-coded, purpose-specific inference control strategies.

5.4 Human Language Processing

Psycholinguistics is a burgeoning field (Gleason, 2004), yet is plagued by basic 

unanswered questions.  There is still no real consensus on how much of human language 

acquisition is based on pure experiential learning, and how much is based on learned 

adaptations and parameter-tunings to genetically provided modules.  Attempts to have 

computer programs learn language based on pure statistical analysis of text have run into 

a brick wall far short of human-level language comprehension (Manning and Schutze, 

1999), yet this doesn’t tell us much about the learnability of language by an embodied 

system.  Some early work on “symbol grounding” (e.g. learning word meanings via 

correlating word usage with robot sensor input) has been carried out in recent years (Roy 

and Mukherjee, 2005), but no one has yet carried out experiments in the area of 

experiential grounding of complex syntactic or semantic relationships.

Human language processing is typically called NLP or “natural language 

processing”, but of course human language is not necessarily natural for a nonhuman 

intelligence.  Learning human language without a human body or human evolutionary 



heritage, is a much harder problem than learning human language in the possession of 

such endowments.  In the case of Novamente we have designed a special communication 

format called Psynese, which is unlike any human language and is a form of linguistic 

communication that’s much more compatible with Novamente’s nature.  We have also 

toyed with the idea of building an interface to Novamente using Lojban (Nicholas and 

Cowan, 2003), a constructed language that has an unambiguous syntax and a foundation 

in predicate logic yet is also suitable for informal human conversation.  But, in spite of 

the unnaturalness of human language for Novamente, there is no question that giving the 

system human language processing ability is a must.  Novamentes and humans have too 

much to learn from each other.  Novamente must eventually be able to read human-

written research papers, explain its ideas to humans in ways they can understand, obtain 

moral and pragmatic guidance from humans, and develop ideas collaboratively with 

humans through conversations.  

The brick wall hit by non-embodied computational language learning algorithms 

takes various forms, but it always somehow comes down to one thing: the dependency of 

language on subtle interdependencies between syntax, semantics and pragmatics.  And 

this dependency has everything to do with the deep link between embodied experience 

and advanced cognition.  

In fact, we are intimately familiar with these issues because we have experienced 

them ourselves!  In parallel with developing Novamente as a would-be AGI system, we 

have also spent a great deal of time in the last few years building specialized commercial 

software applications based on the Novamente platform.  This has been done out of 

financial necessity rather than out of a believe that narrow AI is the best path to general 

AI, but in some cases it has led to work that’s been valuable for general AI as well as for 

short-term narrow AI applications.   Among our Novamente-based narrow-AI projects 

has been one called INLINK (Goertzel et al, 2005), which is natural-language-focused.  

Rather than being a typical, purely unsupervised natural language understanding system, 

INLINK is an interactive system, in which the user types in natural language sentences 

and then interacts with the user interface to be sure that the system has made the correct 

interpretation of the sentence.  Because we needed to make INLINK work in a reasonably 

short time-frame, we couldn’t implement language understanding in the way we really 

wanted to – based on experiential learning, grounding of linguistic terms in an embodied 

world, and so forth.  Instead we implemented a specialized, hard-coded NLP system that 

handles syntax processing and feeds its outputs into the Novamente Atomspace for 

subsequent semantic analysis.  

Experimenting with the INLINK system has been interesting in terms of seeing 

exactly how far a very cleverly constructed rule-based NLP system can be pushed.  We 

knew we would eventually run up against a brick wall, a fundamental limitation in the 

system’s capability due to the fact that its syntax processing was being done without deep 

feedback from the semantic layer.  But we didn’t know exactly where this limit would be.  

We have found that it arises most clearly in the issue of grounding prepositions and other 

function words.  The subtle meanings of these little words like “of”, “to”, “by” and 

“with” are not well captured in dictionary definitions; we have created our own 

“Preposition Wordnet” dictionary that captures them better than other resources, but it’s 

still far from adequate.  It seems qualitatively clear to us that in order to really manipulate 



the semantics of these little words accurately, some experiential grounding in a 

collaborative world-environment will be necessary.  The issue is not so much syntax 

parsing as the mapping of syntactic output into semantically meaningful relationships 

suitable for guiding reasoning.

5.4.1 Example of Semantic Analysis

To more concretely illustrate the issues involved with syntax parsing and 

prepositional semantics and inference, we will show here three representations for the 

three almost-semantically-identical sentences, produced by INLINK’s semantic analysis 

component.  We will discuss what INLINK does and what its shortcomings are, as 

compared to the requirements posed by AGI.

For sake of compactness, in these examples we show only a limited subset of the 

actual Novamente links created in processing the sentences.  We omit WSLinks (which 

link WordNodes to ConceptNodes) and the like, and show only semantically meaningful 

links between ConceptNodes.  ConceptNodes are denoted by the names of the 

WordNodes most closely linked to them, and other nodes such as those denoting tense 

(e.g. %pres_ongoing) are denoted by intuitive shorthand names

Finally, in these examples, links are shown in a relational-logic style, where the 

notation R(X,Y) is used both for Novamente link types R and for predicates R, i.e. it may 

mean either

• that a link of type R exists between the node or link X and the node or link Y, or

• that an Evaluation link exists between the predicate R and the List Atom (X, Y)

For the present purposes this distinction is not an important one (though it is important 

for Novamente dynamics).   Recall also that in Novamente links may span links as well 

as nodes.  

Without further ado, the three examples:

Amir is a friend of James.

Inheritance(B,be)

Tense(B,%pres_ongoing)

objTARGET2(B,F)

subjDESCRIPTEE(B,B1)

Inheritance(B1,Amir)

Inheritance(F,friend)

ofDESCRIPTEE(F,O)

Inheritance(O,James)

Amir and James are friends

Inheritance(B,be)

Tense(B,%pres_ongoing)

objTARGET2(B,F)

subjDESCRIPTEE(B,group^1099074852934_3040)



Inheritance(B1,Amir)

Inheritance(B1,group^1099074852934_3040)

Inheritance(F,friend)

Inheritance(O,James)

Inheritance(O,group^1099074852934_3040)

Amir is James's friend

Inheritance(B,be)

Tense(B,%pres_ongoing)

objTARGET2(B,F)

subjDESCRIPTEE(B,O)

Inheritance(B1,Amir)

Inheritance(F,friend)

possFOCUS2(F,B1)

Inheritance(O,James)

These parses are produced by the rule-based INLINK system, but they are similar 

in form to the output one would expect to find from a learned NLP parsing schema within 

Novamente.  However, there are two issues here:

1. The specific relationships, such as ofDESCRIPTEE and objTARGET, are too 

crude and broad.  Finer-grained relationships along these same lines would be 

learned via experience in an embodied Novamente system, and would be more 

useful for guiding inference.

2. The first level of semantics derivable from English sentences is still too close to 

the English syntax, which means that differently-worded sentences may give rise 

to different-looking semantic representations.  This sort of divergence of 

representation is problematic for inference: one would like Novamente be able to 

reason close to identically on knowledge derived from sentences that are close-to-

identical in meaning.

The second problem may be handled by using a collection of semantic transformation 

rules to get from the language-ish knowledge representation exemplified above to a more 

inference- friendly representation.  In general, at this stage, we require roughly one 

semantic transformation for each subject-argument relationship (e.g. subjAGENT) and 

each preposition sense (e.g. ofFOCUS) and also for senses of common “glue” verbs such 

as “be.”  These transformations are themselves represented as nodes and links and are 

executed via Novamente inference.   

A simple example of such a transformation is the one for ofDESCRIPTEE, which 

looks like 

ForAll R, X, Y: ImplicationLink( foo1, foo2)

foo2 = ( ofIze(R) )(X,Y)

foo1 = AND( ofDESCRIPTEE(R,Y), R(X) )

where ofIze is a Novamente SchemaNode corresponding to the meaning of the relevant 

sense of the word of.



The problem of the preposition and subject-argument-relation senses being too 

high-level and not refined enough is harder to solve.  This is a problem that we believe 

can be most effectively addressed via having an AI system learn preposition and subject-

argument relation and glue word senses based on experience.  Certainly, statistical or 

rule-based approaches to linguistics have shown no particular capability for dealing with 

this sort of issue, so far.  The INLINK approach appears to be the most sophisticated one 

in the literature, but it has known limitations.  The Cyc knowledge base contains a fairly 

refined collection of meanings for these little words (e.g. 14 senses for “in), but it also 

comes nowhere near the subtlety and context-sensitivity needed for handling these words 

in a truly conceptually fluent way.

5.5 Human and Computational Perception

Human perceptual processing is a huge topic (Mountcastle, 1998) which we will 

not address in any depth here.  We will merely give some brief indications of how we feel 

it can be handled within the conceptual and software frameworks outlined above.

In the human brain, each sense is handled somewhat differently.  Different neural 

architectures are involved (Lynch, 1986).  For instance the olfactory cortex has mainly 

combinatory connections, without any hierarchical structure, and is reasonably well 

understood via attractor neural network ideas (Freeman, 1997).    On the other hand 

vision processing has a well known and complex hierarchical structure, which is 

genetically tuned to reduce the otherwise massive complexity of the information 

processing task it handles.  This same diversity of structure will be needed in any AI 

system that intends to handle perceptual data processing within a reasonable amount of 

computational resources.  But just as all the different senses are dealt with in the human 

brain using the same basic physiological mechanisms, similarly in an AI system they can 

all be dealt with using the same fundamental knowledge representation tools and learning 

dynamics.

In Novamente, raw percepts are represented by special node types, e.g. PixelNode 

for a pixel on a camera eye.  Complex percepts are then represented as predicates 

combining raw percepts, embodied in PredicateNodes.  The creation of appropriate 

predicates representing the structure of sensory input is handled by perception-processing 

schema, that in Novamente terms are “concept creation” schema.  Conceptually, all this is 

straightforward, but the kicker is processing speed.  Learning these concept creation 

schema would take infeasibly long, given the amount of data involved.  Thus, the need 

for specialized architectures as are used in the human brain.

Due to its combinatory nature, olfactory processing may not need any special 

handling within Novamente; just some parameter-tuning.  Learning categories of smells 

seems like a pure numerical supervised-classification/clustering type problem.   On the 

other hand, vision’s hierarchical structure obviously affects the inferences that one wants 

to bother doing when analyzing image data-- so to do vision processing effectively within 

Novamente, one needs a visual-hierarchy-guided inference control strategy.

One approach to this problem is to break space down into a hierarchy of cells (a 

"multiresolution hierarchy") and associate a separate pool of pattern-recognition schema 



with each cell.  In this approach each schema may have unrestricted structure, but the 

network of schemata dealing with an overall visual scene has a hierarchical structure 

imposed by the multiresolution hierarchy.   

And, it may also be valuable to introduce biases to the schema learning process 

itself, depending specifically on the sense modality.  For instance, in learning a schema 

dealing with an area of the visual field, you may want to search preferentially for 

dependencies between internal schema sub-nodes depending on one sub-area and internal 

schema sub-nodes depending on nearby sub-areas.  And one can imagine subtler things 

along these lines being introduced, e.g. biasing the search to find dependencies between 

aspects of color, brightness, motion, etc. that are commonly interdependent.  

All this gets quite technical – but the human psychology results show that it may 

be of importance beyond the domain of sense processing – especially the vision case, 

because in many contexts humans use visual imagery for cognitive purposes (Helstrop 

and Logie, 1999).  Imagery may be used for retrieving subtle spatial or perceptual 

information from memory that hasn't been stored as such, and can't easily be deduced 

from other information; it may also be used for planning movements, understanding 

descriptions, and helping solve some kinds of problems.  Of course, this is not a 

necessary prerequisite for advanced cognition – a non-visual AGI could still vastly 

exceed human intelligence – but it may be a prerequisite for humanlike cognition.

6 Novamente vs. the Human Brain/Mind: Self, Learning 

and Feeling

We have discussed a number of aspects of human psychology but we have left out 

a number of major areas – the core topics of “clinical psychology”:  self, awareness, will, 

emotion.   These are slipperier topics than the more cognitive issues discussed above, but 

no less critical to human or AI intelligence.  Now we will run through these various 

issues at a moderate level of depth, explaining how each one can be handled effectively 

within a SMEPH/Novamente framework, in a way that does justice to the best theories of 

human neuropsychology and also to the particular nature of digital computer systems.

6.1 Self and Intersubjectivity

According to the psynet model, a self is nothing mystical, it is a certain type of 

structure, evolving according to a certain type of dynamic, and depending on other 

structures and dynamics in specific ways. Self, we believe, is necessary for creative 

adaptability -- for the spontaneous generation of new routines to deal with new situations. 

Current AI programs do not have selves, and in fact they do not even have the component 

structures out of which selves are built. This is one of the reasons they aren’t very 

intelligent.  



We have argued (Goertzel, 1997) that the construction of the self is a key aspect 

of intelligence – and that the surest way to endow an AI with a self is to place is in a 

situation of “artificial intersubjectivity,” where it gets to modify a (possibly simulated) 

world collaboratively with other intelligent agents.

6.1.1 The Nature of Self

What is the self? Psychology provides this question with not one but many 

answers. One of the most AI-relevant answers is given by Epstein's (1984) synthetic 

personality theory. Epstein argues that the self is a theory. This is a useful perspective for 

AI because theorization is something relatively well-understood within AI.  This 

perspective fits in naturally with Metzinger’s neurophilosophy-inspired notion of a 

“phenomenal self,” mentioned above.

Epstein's personality theory paints a refreshingly simple picture of the mind:

 

[T]he human mind is so constituted that it tends to organize experience 

into conceptual systems. Human brains make connections between events, 

and, having made connections, they connect the connections, and so on, 

until they have developed an organized system of higher- and lower-order 

constructs that is both differentiated and integrated. ... 

In addition to making connections between events, human brains have 

centers of pleasure and pain. The entire history of research on learning 

indicates that human and other higher-order animals are motivated to 

behave in a manner that brings pleasure and avoids pain. The human being 

thus has an interesting task cut out simply because of his or her 

biological structure: it is to construct a conceptual system in such a 

manner as to account for reality in a way that will produce the most 

favorable pleasure/pain ratio over the foreseeable future. This is 

obviously no simple matter, for the pursuit of pleasure and the 

acceptance of reality not infrequently appear to be at cross-purposes to 

each other. 

He divides the human conceptual system into three categories: a self-theory, 

reality-theory, and connections between self-theory and reality-theory. And he notes that 

these theories may be judged by the same standards as theories in any other domain: 

[Since] all individuals require theories in order to structure their 

experiences and to direct their lives, it follows that the adequacy of 

their adjustment can be determined by the adequacy of their theories. 

Like a theory in science, a personal theory of reality can be evaluated 

by the following attributes: extensivity [breadth or range], parsimony, 

empirical validity, internal consistency, testability and usefulness. 

A person's self-theory consists of her best guesses about what kind of entity she 

is. In large part it consists of ideas about the relationship between herself and other 

things, or herself and other people. Some of these ideas may be wrong; but this is not the 

point. The point is that the theory as a whole must have the same qualities required of 

scientific theories. It must be able to explain familiar situations. It must be able to 



generate new explanations for unfamiliar situations. Its explanations must be detailed, 

sufficiently detailed to provide practical guidance for action. Insofar as possible, it should 

be concise and self-consistent. 

The acquisition of a self-theory, in the development of the human mind, is 

intimately tied up with the body and the social network. The infant must learn to 

distinguish their body from the remainder of the world.  By systematically using the 

sense of touch -- a sense that has never been reliably simulated in an AI program -- she 

grows to understand the relation between herself and other things. Next, by watching 

other people she learns about people; inferring that she herself is a person, she learns 

about herself. She learns to guess what others are thinking about her, and then 

incorporates these opinions into her self-theory. Most crucially, a large part of a person's 

self-theory is also a meta-self-theory: a theory about how to acquire information for one's 

self-theory. For instance, an insecure person learns to adjust her self-theory by 

incorporating only negative information. A person continually thrust into novel situations 

learns to revise her self-theory rapidly and extensively based on the changing opinions of 

others -- or else, perhaps, learns not to revise her self-theory based on the fickle 

evaluations of society.

We believe that capacity for creative intelligence is dependent on the possession 

of effective self- and reality- theories – because self- and reality- theories provide the 

dynamic data structures – the SMEPH derived-hypergraph subgraphs -- needed for 

flexible, adaptable, creative thought. 

The single quality most lacking in current AI programs is the ability to go into a 

new situation and "get oriented." This is what is sometimes called the brittleness 

problem. Our AI programs, however intelligent in their specialized domains, do not know 

how to construct the representations that would allow them to apply their acumen to new 

situations. This general knack for "getting oriented" is something which humans acquire 

at a very early age. 

People do not learn to get oriented all at once. They start out, as small children, by 

learning to orient themselves in relatively simple situations. By the time they build up to 

complicated social situations and abstract intellectual problems they have a good amount 

of experience behind them. Coming into a new situation, they are able to reason 

associatively: "What similar situations have I seen before?" And they are able to reason 

hierarchically: "What simpler situations is this one built out of?" By thus using the 

information gained from orienting themselves to previous situations, they are able to 

make reasonable guesses regarding the appropriate conceptual representations for the 

new situation. In other words, they build up a dynamic data structure consisting of new 

situations and the appropriate conceptual representations. This data structure is 

continually revised as new information that comes in, and it is used as a basis for 

acquiring new information. This data structure contains information about specific 

situation and also, more abstractly, about how to get oriented to new situations. 

Now, we suspect that it is just not computationally feasible to learn how to get 

oriented to complex situations, without first having learned how to get oriented to simpler 

situations. This regress only bottoms out with the very simplest situations, the ones 

confronted by every human being by virtue of having a body and interacting with other 

humans. There is a natural order of learning here, which is, due to various psychological 



and social factors, automatically followed by the normal human child. This natural order 

of learning is reflected, in the mind, by n hierarchical data structure in which more and 

more complex situations are comprehended in terms of simpler ones. But those who write 

AI programs have made little or no attempt to respect this natural order. 

Typically, we provide our AI programs with concepts that "make no sense" to 

them, which they are intended to consider as given, a priori entities. On the other hand, to 

a human being, there are no given, a priori entities; everything bottoms out with the 

phenomenological and perceptual, with those very factors that play a central role in the 

initial formation of self- and reality-theories. To us, complex concepts and situations are 

made of simpler, related concepts and situations to which we already know how to orient 

ourselves; and this reduction continues down to the lowest level of sensations and 

feelings. To our AI programs, the hierarchy bottoms out prematurely, and thus there can 

be no functioning dynamic data structure for getting oriented, no creative adaptability, no 

true intelligence. 

The way to get around these problems is to create AI programs that are not only 

embodied but also intrinsically social.  This gives rise to the notion of artificial 

intersubjectivity or A-IS (Goertzel, 1997).  The idea of A-IS is to simulate a system of 

intelligences collectively creating their own subjective (simulated) reality. 

6.1.2 Artificial Intersubjectivity

The basic concept of A-IS is that a collection of artificially intelligent agents, in 

order to achieve a high level of intelligence via interacting in a simulated world, must 

collude in the modification of that world, so as to produce a mutually more useful 

simulated reality.  In this way they may evolve interrelated self- and reality-theories, and 

thus artificial intersubjectivity.  

The key question is whether this can be expected to happen spontaneously or not.  

This ties in with the human-psychology question of how much in-built mechanism we 

have for social modeling.  While the jury is still out on the details, the correct answer 

seems to be “quite a lot” (Calvin and Bickerton, 2001).   

So, it would seem that, speaking practically,  spontaneously and automatic 

intersubjectivity cannot be counted on. Unless the different interacting AI agents are in 

some sense "wired for cooperativity," they may well never see the value of collaborative 

subjective-world-creation.  We humans became intelligent in the context of collaborative 

world-creation, of intersubjectivity (even apes are intensely intersubjective).  Unless one 

is dealing with AI agents that evolved their intelligence in a social context -- a 

theoretically possible but pragmatically tricky solution -- there is no reason to expect 

significant intersubjectivity to spontaneously emerge through interaction. 

Fortunately, there is an alternative, which is the design strategy called "explicit 

socialization," which involves explicitly programming each AI agent in a community, 

from the start, with: 

1) an a priori knowledge of the existence and autonomy of the other programs in its 

environment, and 



2) an a priori inclination to model the behavior of these other programs. 

In other words, in this strategy, one enforces A-IS from the outside, rather than, as in 

natural "implicit socialization," letting it evolve by itself. This approach is, to a certain 

extent, philosophically disappointing; but this may be the kind of sacrifice one must make 

in order to bridge the gap between theory and practice.  In a Novamente context, what 

this boils down to is creating special Lobes that are explicitly purposed to serve as 

models for other minds: architecturally quite simple once one decides to do it.  This 

aspect of Novamente is very well-suited for experimentation within the AGI-SIM 

simulation world.

6.2 Free Will

The problem of “free will” is a large one and conceals many subtleties and 

complexities (Dennett, 2003).  However, recent neuroscience research by Benjamin Libet 

(2000), Michael Gazzaniga (1989) and others has shed substantial light on the matter 

from a practical perspective.  Given these results, it is now possible to analyze in some 

depth how a phenomenon like “free will” may be realized in an AI system.  In 

Metzinger’s terms, we consider free will as an aspect of an intelligent system’s 

constructed phenomenal self.  Libet and Gazzaniga tell us some concrete and interesting 

things about the particularities of this aspect of the phenomenal self.

 Free will, we suggest, has a lot to do with planning.  The world is complex and 

uncertain, and an intelligent system rarely knows what’s going to happen in the actual 

universe.  So, in order to plan for the future, it must create a virtual multiverse inside 

itself: i.e. at time t it must model several different future states for time t+s, since it 

doesn’t know which future state will actually occur.  It must create a virtual multiverse 

with branch-points regarding its own external actions, and its own internal events, as well 

as external events not directly caused by itself.  This is what our brains do all the time – 

and it is a process that arguably gives rise to a free-will-like experience within the 

phenomenal self.

 We know that the cognitive portions of brains do not directly experience the 

external universe; they only experience their own models of the external universe.  This 

is demonstrated by many experiments regarding perceptual illusions, for example 

(Maturana and Varela, 1992).  What this means is that, even if we should happen to live 

in a strictly deterministic universe
7[1]

, we subjectively live in a multiverse in which 

several different possible branches are subjectively real at any given time.  But most of 

these branches are very short-lived: they exist only conjecturally while we wait for the 

next percepts which will tell us which of the branches is actualized.

Furthermore, brains largely experience themselves only via their models of 

themselves.  Brains, being complex systems, are hard to predict even for themselves, and 

so one part of a brain often must use a virtual multiverse to model another part.

  When a brain triggers a real-world action, this action occurs in the external 

universe, and then registers internally in the virtual multiverse which models the external 



universe.  The brain is then aware of a process of “collapse” wherein the multiple 

branches of the virtual multiverse collapse to a single branch.  Furthermore, this 

collapsing process occurs rapidly, within the same subjectively experienced moment as 

the actual event in the physical universe.  Note that a subjectively experienced moment is 

not instantaneous. 

  Similarly, when a part of a brain carries out an action, and another part of the 

intelligent system is modeling this first part using a virtual multiverse, then the action in 

the first part corresponds with a collapse to a single branch in the virtual multiverse 

contained in the second part.

  The special feeling of “free will” that we experience consists primarily of the 

subjectively-simultaneous consciousness of 

 

• an event occurring in the external universe 

• a collapse-to-a-single-branch occurring in the brain’s internal virtual multiverse 

 

or else the simultaneous consciousness of

 

• an event occurring in one part of the brain 

• a collapse-to-a-single-branch occurring in the virtual multiverse used by another 

part of the brain to model the first part 

 

The subjective simultaneity is only present when the two things occur at almost the same 

physical time, which generally occurs only when the event in question is either internal, 

or else an external event that’s directly triggered by the brain itself.

Libet (2000) has done experiments showing that, in many cases, the “decision” to 

carry out an action occurs after the neural signals directly triggering the action have 

already occurred.  This observation fits in perfectly with the virtual multiverse theory.  

Note that this time interval is sufficiently short that the action and the decision occur 

within the same subjectively experienced moment.  In fact, Libet’s results, though often 

presented as counterintuitive, are explained naturally by the current theory – it’s the 

opposite result, that perceived-virtual-multiverse-collapses occurred after the 

corresponding actions, that would be more problematic for the current theory.

  Dennett (2003) analyzes Libet’s results by positing that free will is a distributed 

experience which occurs over an expanse of time (the experienced moment) and a 

number of different brain systems, and that there is nothing paradoxical about the part of 

this experience labeled “decision” occurring minutely before the part of this experience 

labeled “action trigger.”  I agree with Dennett’s general observations – and with most of 

his comments about free will – but I am aiming to achieve a greater level of precision in 

my analysis of the phenomenon. 

  For example, suppose I am trying to decide whether to kiss my beautiful 

neighbor.  One part of my brain is involved in a dynamic which will actually determine 

whether I kiss her or not.  Another part of my brain is modeling that first part, and doesn’t 

know what’s going to happen.  A virtual multiverse occurs in this second part of the 

brain, one branch in which I kiss her, the other in which I don’t.  Finally, the first part 



comes to a conclusion; and the second part collapses its virtual multiverse model almost 

instantly thereafter.  

  The brain uses these virtual multiverse models to plan for multiple contingencies, 

so that it is prepared in advance, no matter what may happen.  In the case that one part of 

the brain is modeling another part of the brain, sometimes the model produced by the 

second part may affect the actions taken by the first part.  For instance, the part (call it B) 

modeling the action of kissing my neighbor may come to the conclusion that the branch 

in which I carry out the action is a bad one.  This may affect the part (call it A) actually 

determining whether to carry out the kiss, causing the kiss not to occur.  The dynamic in 

A which causes the kiss not to occur, is then reflected in B as a collapse in its virtual 

multiverse model of A.  

  Now, suppose that the timing of these two causal effects (from B to A and from A 

to B) is different.  Suppose that the effect of B on A (of the model on the action) takes a 

while to happen (spanning several subjective moments), whereas the effect of A and B 

(of the action on the model) is nearly instantaneous (occurring within a single subjective 

moment).  Then, another part of the brain, C, may record the fact that a collapse to 

definiteness in B’s virtual multiverse model of A, preceded an action in A.  On the other 

hand, the other direction of causality, in which the action in A caused a collapse in B’s 

model of A, may be so fast that no other part of the brain notices that this was anything 

but simultaneous.  In this case, various parts of the brain may gather the mistaken 

impression that virtual multiverse collapse causes actions; when in fact it’s the other way 

around.  This, I conjecture, is the origin of our mistaken impression that we make 

“decisions” that cause our actions.

  The “illusion” of free will, therefore, consists largely of a mistaken impression 

gathered by some parts of the brain about the ordering of events in other parts of the 

brain.  It consists of a confusion between two different roles played by virtual multiverse 

models:

 

• assisting in the determination of actions (which happens sometimes, and with a 

significant time lag) 

• registering already-occurred actions (which happens more often, and almost 

instantaneously) 

 

Because in the former, multiple-subjective-moment case, virtual multiverse collapse 

precedes action-determination, the brain mistakenly infers that in the latter, single-

subjective-moment case, virtual multiverse collapse also precedes action-determination.  

But in fact, in the latter case virtual multiverse collapse follows action-determination.

  However, it is not an illusion or confusion that virtual multiverse modeling has an 

impact on actions taken in the brain.  This kind of modeling is clearly a very valuable part 

of brain dynamics, due to the complex and hard-to-predict nature of the brain and world.  

Virtual multiverse modeling is necessary due to practical indeterminism within and 

outside the brain, which exists whether or not fundamental indeterminism does.  It is 

necessary because internal and external events are often indeterministic from the 

subjective perspective of particular, useful parts of the brain.  Furthermore, and critically, 

the brain as a whole is often indeterministic from its own perspective.



Finally, the phenomenon of confabulation (Gazzaniga, 1989) adds a third aspect to 

virtual multiverse dynamics: not only do virtual multiverse inferences/simulations affect 

actions, and actions cause updating of virtual multiverse simulations; but also, reasoning 

about actions causes inferred stories to be attached to the memories of virtual-multiverse 

collapses.

 

6.3 Awareness

Free will leads us naturally to the even thornier issue of “consciousness” or 

“awareness” – an issue more controversial by far than anything else in the cognitive 

science domain.  The SMEPH/Novamente approach is neutral as regards the ultimate 

nature of consciousness, although the author has his own opinions (Goertzel, 2004d).  

However, the approach to free will described above partially addresses the phenomenon 

of consciousness, in a way that we’ll briefly outline here.  

Some aspects of consciousness can be understood by thinking about the virtual 

multiverse models that parts of the brain construct, in order to model the brain as a whole.  

These virtual multiverse models are used to help guide the dynamics of the whole brain 

(on a slow time scale), and they are also continually updated to reflect the actual 

dynamics of the brain (on a faster time scale, occurring within a single subjective 

moment).  The feeling of consciousness is in part the feeling of events in the whole brain 

being rapidly reflected in the changes in the virtual multiverse models maintained in parts 

of the brain … and these changes then causing further virtual-multiverse-model changes 

which then feed back to change the state of the whole brain again … etc.  The conscious 

feeling of the flow of time is actually a feeling of continual ongoing branch-selection in 

the virtual multiverse model of the whole brain – the feeling of briefly-explored possible 

futures being left by the wayside as the actualized futures are registered in the model.

  Dennett (1992) analyzed human consciousness as a serial computer running as a 

virtual machine on top of a parallel computer (the “parallel computer” being the 

unconscious, which comprises the majority of brain function).  However, I don’t think 

this is quite right.  Rather, I think human consciousness has to do with the feedback 

between virtual multiverse modeler software (embodied in various parts of the brain) and 

massively parallel software (the rest of the brain).  The virtual universe modeler software 

is not exactly a serial computation process, it may well explore multiple branches in 

parallel.  

  The virtual-multiverse theory of free will does not explicitly solve the “hard 

problem of consciousness” (Chalmers, 1997), the relationship between subjective 

awareness (“qualia”) and physical phenomena.  However, it does fit in naturally with a 

particular hypothetical solution to the hard problem.  Suppose one accepts, as a solution 

to the hard problem, the postulate that a quale occurs when a system comes to display a 

pattern that it did not display a moment before; and the more prominent patterns 

correspond to the more intense qualia.  Then, it follows from the present theory of free 

will that intense qualia will tend to be correlated with significant activity in the whole-

brain virtual multiverse modeler.  This provides an explanation for the oft-perceived 



correlation between consciousness and free will (free will also often being associated 

with significant activity in the whole-brain virtual multiverse modeler).

6.4 Emotion

Following “self” and “awareness,” another critical aspect of human “clinical 

psychology” is emotion.  Emotions play an extremely important role in human mental life 

– but it is not, on the face of it, clear whether this needs to be the case for AI’s.  Much of 

human emotional life is distinctly human in nature, clearly not portable to systems 

without humanlike bodies.  Furthermore, many problems in human psychology and 

society are caused by emotions run amok in various ways – so in respects it might seem 

desirable to create emotion-free AI’s.

  On the other hand, it may also be that emotions represent a critical part of mental 

process, and human emotions are merely one particular manifestation of a more general 

phenomenon – which must be manifested in some way in any mind.  This is the 

perspective we’ll advocate here.  We suggest that the basic phenomenon of emotion is 

something that any mind must experience.  Human emotions are then considered as an 

elaboration of the general “emotion” phenomenon in a peculiarly human way.  There are 

a few universal emotions – including happiness, sadness and spiritual joy – which any 

intelligent system with finite computational resources is bound to experience, to an 

extent.  And then there are many species-specific emotions, which in the case of humans 

include rage, joy and lust and other related feelings.

  Generally speaking motions have two aspects, which may be called hot versus 

cold (Mandler, 1975), or “conscious-experiential-flavor” versus “neural/cognitive 

structure-and-dynamics” – or, using our preferred vocabulary, qualia versus pattern.  

From some conceptual perspectives, the relation between the qualia aspects and the 

pattern aspect is problematic.  We prefer a philosophy in which qualia and patterns are 

aligned – each pattern comes along with a quale, which is more or less intense according 

to the “prominence” of the pattern (the degree of simplification that the pattern provides 

in its ground) (see Goertzel, 2004a).  In this approach, the qualia and pattern aspects of 

emotion may be dealt with in a unified way.

  So what is the general pattern of “emotion”?  The working conceptual definition 

given in (Goertzel, 2004c) is as follows:

A mental state that does not arise through free will, and that and is often accompanied by 

physiological changes

 

“Free will,” as proposed in (Goertzel, 2004b), is a complex sort of quale, consisting 

primarily of

 

• the registration of an (internal or external) action in an intelligent system’s 

“virtual multiverse model,” roughly simultaneously with the execution of that 

action 



 

and generally going along with

 

• the construction of causal models explaining what internal structures and 

dynamics caused the action 

 

Sometimes these two aspects are uncorrelated, giving the feeling of “I don’t know why I 

decided to do that.”

  Mental states that do not arise through free will, are mental states that are 

registered in the virtual multiverse model only considerably after they have occurred, 

thus giving a feeling of “having spontaneously arisen”.   This often goes along with 

arising through such a large-scale and complicated – or opaque -- process that detailed 

causal modeling is difficult.  But sometimes, these two aspects are uncorrelated, and one 

can rationally reconstruct why some spontaneous mind-state occurred, in a reasonably 

confident way.

  What causes mental states to register in the brain’s virtual multiverse model in a 

delayed way?   One cause might be that these mental states are ambiguous and difficult to 

understand, so that it takes the virtual multiverse modeler a long time to understand 

what’s going on – to figure out which branch has actually been traversed.  Another might 

be that the state is correlated with physical processes that inhibit the virtual multiverse 

modeler’s normal “branch collapsing” activity – and that the branch-collapsing only 

proceeds a little later, once this inhibitory effect has diminished.

  In the case of human emotions, the “accompaniment with physiological changes” 

mentioned in the above definition of emotion seems to be a key point.  It seems that 

there’s a time lag between certain kinds of broadly-based physiological sensations in the 

human brain/body, and registration of these sensations in the human brain’s virtual 

multiverse modelers.   

 

And so, in regard to emotions, a flexibly superposed subjective multiverse is 

maintained, rather than a continually collapsed subjective universe that defines a single 

crisp path through the virtual multiverse.  This helps explain both the beautiful and the 

confusing nature of emotions.

  Regarding the second hypothesized factor, the obvious question is: Why do the 

broadly-based partly-physical sensations we humans call “emotions” have this strange 

relationship with time?  This may be largely because they consist of various types of data 

coming in from various parts of the brain and body, with various time lags.  A piece of 

sensation coming in from one part of the brain or body right now may have a different 

meaning depending on information about what’s going on in some other part of the brain 

or body – but this information may not be there yet.  When information gathering and 

integration regarding a “distributed action pattern” requires this kind of temporally-

defused activity, then the tight connection between action and virtual-multiverse-model 

collapse that exists in other contexts doesn’t exist anymore.  Ergo, no feeling of “free 

will” – rather, a feeling of things happening in oneself, without a correlated “decision 

process.”  A strong emotion can make one feel “outside of time.”



  Furthermore, while it’s easy to make a high-level story as to what made one sad 

or happy or feel some other emotion, it’s not at all easy to make up a story regarding the 

details of an emotional experience.  Usually, one just doesn’t know – because so much of 

the details of the emotional experience have to do with physiological dynamics that are 

opaque to the analytical brain (unless the analytical brain makes a huge, massively-effort-

consuming push to become aware of these normally unconscious processes).

  These comments lead us to a more specific, technical, “mechanistic” and 

hypothetical definition of emotion:

A mental state marked by prominent internal temporal patterns that

• are not controllable to any reasonable extent by the virtual multiverse modeling 

subsystem, or 

• have the property that their state at each time is far more easily interpretable by 

integration of past and future information. 

 Such patterns will often, though not always, involve complex and broad physiological 

changes.

 

  And what does this mean regarding the potential experiencing of emotions by 

nonhuman minds?  Clearly, in any case where there’s diverse and ambiguous information 

coming in from various hard-to-control parts of an intelligent system, one is not going to 

have the “usual” situation of virtual multiverse collapse.  One is going to have a sensation 

of major patterns occurring inside one’s own mind, but without any “free will” type 

“decision” process going along with it.  This is, in the most abstract sense, “emotion.”  

Emotions in this sense need not be correlated with physiological patterns, but it makes 

sense that they often will be.

  This also brings up the question of emotional typology.  Humans experience a 

vast range of emotions.  Will other types of minds experience completely different 

emotion-types, or is there some kind of general system-theoretic typology of emotions?

  The line of thinking pursued here suggests that there will be a small amount of 

emotional commonality among various minds – certain very simple emotions have an 

abstract, mind-architecture-independent meaning.   But the vast majority of human 

emotional nuance is tied to human physical embodiment and evolutionary history, and 

would not be emulated in an AI mind or a radically different biological species.

  For instance, any system that has a set of goals that remain constant over a period 

of time, can experience an emotion we may call “abstract happiness,” which is the 

emotion induced by an increasing amount of goal-achievement.   On the other hand, it 

can also experience “abstract sadness,” i.e. the emotion induced by a decreasing amount 

of goal-achievement.   These emotions can become quite complex because organisms 

can have multiple goals, and at any one moment some may experience increasing 

achievement while others experience decreasing achievement.

  What of specific human emotions like lust, rage and fear?  Clearly these exist 

because we have specific physiological response systems for dealing with specific 

situations.  Fear activates flight-related subsystems; rage activates battle-related 

subsystems; lust activates sex-related subsystems.  Each of these body subsystems, when 

activated, floods the brain with intensive and diverse and hard-to-process stimuli, which 



are beyond the control of “free will” related processes.  Many of the responses of these 

body subsystems are fast -- too fast for virtual multiverse modeling to deal with.  They’re 

fast because primordially they had to be fast – you can’t always stop to ponder before 

running, attacking or mating.

  All in all, there’s no doubt that, unless an AI system is given a mammal-like 

motivational system, its emotional makeup will vastly differ from that of humans.  An AI 

system won’t necessarily have strong emotions associated with battle, reproduction or 

flight.  Conceivably it could have subsystems associated with these types of actions, but 

even so, it could be given a much greater ability to introspect into these subsystems than 

humans have in regard to their analogous subsystems.  

  So the most reasonable conclusion about AI emotions is that:

 

• AI systems clearly will have emotions 

• Their emotions will include, at least, happiness and sadness and spiritual joy 

• Generally AI systems will probably experience less intense emotions than 

humans, because they can have more robust virtual multiverse modeling 

components, which are not so easily bollixed up – so they’ll less often have the 

experience of major non-free-will-related mental-state shifts 

• Experiencing less intense emotions does not imply experiencing less intense states 

of consciousness.  Emotion is only one particular species of state-of-

consciousness. 

• The specific emotions AI systems will experience will probably be quite different 

from those of humans, and will quite possibly vary widely among different AI 

systems 

• If you put an AI in a human-like body with the same sorts of needs as primordial 

humans, it would probably develop every similar emotions to the human ones 

 

We now briefly consider these issues in terms of the specific structures and 

dynamics of the Novamente AI system.  In this context, a specific prediction made by the 

present theory of emotions is that complex map dynamics will be more associated with 

emotions than other aspects of Novamente cognition.  Complex map dynamics involve 

temporal patterns that are hard to control, and that present sufficiently subtle patterns that 

the present is much better understood once one knows the immediate future.  One may 

infer from this a possible major feature of the difference between Novamente psychology 

and human psychology: the strongest emotions of a Novamente system may be associated 

with the most complexly unpredictable cognitions it has -- rather than, in humans, with 

phenomena that evoke the activities of powerful, primordial, opaque-to-cognition 

subsystems.  
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